

Manufacturer Certificated

CERT. No.: 282Q19070712006 CERT. No.: 282E19070712007

Product Specification

Model: <u>TTR170XHT-01</u> 17.0″TFT Display Module(1280*1024)

This module uses RoHS material

Tailor Pixels Technology Co., Ltd. www.tailorpixels.com tailor@tailorpixels.com Ph: 86-755-8821 2653

Contents in this document are subject to change without notice. No part of this document can be reproduced or transmitted by any means for any purpose without the written permission of Tailor Pixels Technology Co., Ltd.

Contents

1	Handling Precautions	. 4
2	General Description	. 5
	2.1 Display Characteristics	5
	2.2 Absolute Maximum Rating of Environment	6
	2.3 Optical Characteristics	7
3	TFT-LCD Module	11
	3.1 Block Diagram	.11
	3.2 Interface Connection	12
	3.2.1 Connector Type	12
	3.2.2 Connector Pin Assignment	12
	3.3 Electrical Characteristics	14
	3.3.1 Absolute Maximum Rating	14
	3.3.2 Recommended Operating Condition	14
	3.4 Signal Characteristics	15
	3.4.1 LCD Pixel Format	15
	3.4.2 LVDS Data Format	15
	3.4.3 Color versus Input Data	16
	3.4.4 LVDS Specification	17
	3.4.5 Input Timing Specification	19
	3.4.6 Input Timing Diagram	20
_	3.5 Power ON/OFF Sequence	21
4	Backlight Unit	22
	4.1 Block Diagram	22
	4.2 Interface Connection	23
	4.2.1 Connector Type	23
	4.2.2 Connector Pin Assignment	25
	4.3 Electrical Characteristics	26
	4.3.1 Absolute Maximum Rating	26
_	4.3.2 Recommended Operating Condition	26
5	Reliability lest	28
6	Snipping Label	29
	Mechanical Characteristics	5U ⊃ 4
ð	Packing Specification	J L
	8.1 Packing Flow	31
	8.2 Pallet and shipment information	32

1 Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open or modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) In case a TFT-LCD Module has to be put back into the packing container slot after once it was taken out from the container, do not press the center of the LED lightbar edge. Otherwise the TFT-LCD Module may be damaged.
- 10) Insert or pull out the interface connector, be sure not to rotate nor tilt it of the TFT-LCD Module.
- 11) Do not twist nor bend the TFT -LCD Module even momentary. It should be taken into consideration that no bending/twisting forces are applied to the TFT-LCD Module from outside. Otherwise the TFT-LCD Module may be damaged.
- 12) Please avoid touching COF position while you are doing mechanical design.
- 13) When storing modules as spares for a long time, the following precaution is necessary: Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.

2 General Description

This specification applies to the 17 inch wide Color a-Si TFT-LCD Module TTR170XHT-01 The display supports the SXGA+ (1280(H) x 1024(V)) screen format and 16.7M colors (RGB 6-bits + Hi-FRC data). The input interface is Dual channel LVDS and this module doesn't contain an driver board for backlight.

2.1 Display Characteristics

The following items are characteristics summary on the table under 25⁻ condition:

ITEMS	Unit	SPECIFICATIONS
Screen Diagonal	[mm]	432 (17.0")
Active Area	[mm]	337.920(H) × 270.336(V)
Pixels H x V	-	1280 × 3(RGB) × 1024
Pixel Pitch	[mm]	0.264(per one triad) × 0.264
Pixel Arrangement	-	R.G.B. Vertical Stripe
Display Mode	-	Normally White
White Luminance (Center)	[cd/m ²]	1000 (Тур.)
Contrast Ratio	-	1000 : 1 (Typ.)
Response Time	[msec]	5 (Typ., on/off)
Power Consumption	[Watt]	28 (Тур.)
(LCD Module + Backligh unit)		LCD module : PDD (Typ.)=3 @ Black pattern,Fv=60Hz
		Backlight unit : P _{BLU} (Typ.) = 25 @Is=60mA
Weight	[Grams]	1273 (Тур.)
Outline Dimension	[mm]	358.5(H) x 296.5(V) x 10.3(D) (Typ.)
Electrical Interface	-	Dual Channel LVDS
Support Color	-	16.7M colors (RGB 6-bits +Hi-FRC data)
Surface Treatment	-	Anti-glare type, Hardness 3H
Temperature Range		
Operating	[°C]	0 to +50
Storage (Shipping)	[°C]	-20 to +60
RoHS Compliance	-	RoHS Compliance
TCO Compliance	-	TCO6.0 Compliance

2.2 Absolute Maximum Rating of Environment

Permanent damage may occur if exceeding the following maximum rating.

Symbol	Description	Min.	Max.	Unit	Remark
TOP	Operating Temperature	0	+50	[°C]	Note 2-1
TGS	Glass surface temperature (operation)	0	+65	[°C]	Note 2-1 Function judged only
HOP	Operation Humidity	5	90	[%RH]	Note 2-1
TST	Storage Temperature	-20	+60	[°C]	
HST	Storage Humidity	5	90	[%RH]	

Note 2-1: Temperature and relative humidity range are shown as the below figure.

- 1. 90% RH Max (Ta $\leq\!39^\circ\!\mathrm{C}$)
- 2. Max wet-bulb temperature at 39°C or less. (Ta $\leq\!39^\circ\!\mathrm{C}$)
- 3. No condensation

2.3 Optical Characteristics

The optical characteristics are measured on the following test condition.

Test Condition:

- 1. Equipment setup: Please refer to *Note 2-2*.
- 2. Panel Lighting time: 30 minutes
- 3. VDD=5.0V, Fv=60Hz,Is=60mA,Ta=25°C

Symbol	Descriptio	n	Min.	Тур.	Max.	Unit	Remark
L _w	White Luminance (Cen	ter of screen)	900	1000	-	[cd/m2]	Note 2-2 By SR-3
L _{uni}	Luminance Uniformit	y (9 points)	75	80	-	[%]	Note 2-3 By SR-3
CR	Contrast Ratio (Cente	er of screen)	600	1000	-	-	Note 2-4 By SR-3
θ _R	Horizontal Viewing Angle	Right	75	85	-		
θ	(CR=10)	Left	75	85	-		
Φ_{H}	Vertical Viewing Angle	Up	70	80	-		
$\Phi_{\scriptscriptstyle m L}$	(CR=10)	Down	70	80	-	[degree]	Note 2-5
θ _R	Horizontal Viewing Angle	Right	75	88	-		By SR-3
θ	(CR=5)	Left	75	88	-		
Φ_{H}	Vertical Viewing Angle	Up	70	85	-		
$\Phi_{ extsf{L}}$	(CR=5)	Down	70	85	-		
T _r		Rising Time	-	3.8	5.5		
T _F	Response Time	Falling Time	-	1.2	2.5	[msec]	Note 2-6
-		Rising + Falling	-	5	8		By TRD-100
R _x		Red x	0.615	0.645	0.675		
Ry		Red y	0.303	0.333	0.363		
G _x		Green x	0.290	0.320	0.350		
Gy	Color Coordinates	Green y	0.596	0.626	0.656		
B _x	(CIE 1931)	Blue x	0.123	0.153	0.183		By SR-3
By		Blue y	0.027	0.057	0.087		
W _x		White x	0.283	0.313	313 0.343		
W _v		White y	0.299	0.329	0.359		
СТ	Crosstalk		-	-	1.5	[%]	Note 2-7 By SR-3
F _{dB}	Flicker (Center of	screen)	-	-	-20	[dB]	Note 2-8 Bv SR-3

Definition:

Luminance Uniformity =
$$\frac{\text{Minimum Luminance of 9 Points (P1 ~ P9)}}{\text{Maximum Luminance of 9 Points (P1 ~ P9)}}$$

a. Test pattern: White Pattern

Note 2-4: Contrast Ratio Measurement

Definition:

Contrast Ratio = $\frac{\text{Luminance of White pattern}}{\text{Luminance of Black pattern}}$

a. Measured position: Center of screen (P5) & perpendicular to the screen ($\theta=\Phi=0^{\circ}$)

Note 2-5: Viewing angle measurement

Definition: The angle at which the contrast ratio is greater than 10 & 5.

a. Horizontal view angle: Divide to left & right ($\theta_L \& \theta_R$) Vertical view angle: Divide to up & down ($\Phi_H \& \Phi_L$)

Note 2-6: Response time measurement

The output signals of photo detector are measured when the input signals are changed from "Black" to "White" (rising time, T_R), and from "White" to "Black" (falling time, T_F), respectively. The response time is interval between the 10% and 90% of optical response. (*Black & White color definition: Please refer section 3.4.3*)

Note 2-7: Crosstalk measurement

Definition:

 $CT = Max. (CT_H, CT_V);$

Where

a.Maximum Horizontal Crosstalk :

 $CT_{H} = Max. (|Y_{BL} - Y_{AL}| / Y_{AL} \times 100 \%, |Y_{BR} - Y_{AR}| / Y_{AR} \times 100 \%);$ Maximum Vertical Crosstalk:

 $CT_V = Max. (|Y_{BU} - Y_{AU}| / Y_{AU} \times 100 \%, |Y_{BD} - Y_{AD}| / Y_{AD} \times 100 \%);$

b. Y_{AU}, Y_{AD}, Y_{AL}, Y_{AR} = Luminance of measured location without Black pattern

 Y_{BU} , Y_{BD} , Y_{BL} , Y_{BR} = Luminance of measured location with Black pattern

Note 2-8: Flicker measurement

a. Test pattern: It is listed as following.

R: Red, G: Green, B:Blue

b. Measured position: Center of screen (P5) & perpendicular to the screen ($\theta = \Phi = 0^{\circ}$)

3 TFT-LCD Module

3.1 Block Diagram

The following shows the block diagram of the 17 inch Color TFT-LCD Module.

Control Board

3.2 Interface Connection

3.2.1 Connector Type

	Manufacturer	P-TWO	STM				
	Part Number	AL230F-A0G1D-P	MSCKT2407P30HB				
Mating Connector	Manufacturer	JAE					
	Part Number	FI-X30HL (Locked Type)					

3.2.2 Connector Pin Assignment

PIN #	Symbol	Description	Remark
1	RxO0-	Negative LVDS differential data input (Odd data)	
2	RxO0+	Positive LVDS differential data input (Odd data)	
3	RxO1-	Negative LVDS differential data input (Odd data)	
4	RxO1+	Positive LVDS differential data input (Odd data)	
5	RxO2-	Negative LVDS differential data input (Odd data)	
6	RxO2+	Positive LVDS differential data input (Odd data)	
7	GND	Ground	
8	RxOCLK-	Negative LVDS differential clock input (Odd clock)	
9	RxOCLK+	Positive LVDS differential clock input (Odd clock)	
10	RxO3-	Negative LVDS differential data input (Odd data)	
11	RxO3+	Positive LVDS differential data input (Odd data)	
12	RxE0-	Negative LVDS differential data input (Even data)	
13	RxE0+	Positive LVDS differential data input (Even data)	
14	GND	Ground	
15	RxE1-	Negative LVDS differential data input (Even data)	
16	RxE1+	Positive LVDS differential data input (Even data)	
17	GND	Ground	
18	RxE2-	Negative LVDS differential data input (Even data)	
19	RxE2+	Positive LVDS differential data input (Even data)	
20	RxECLK-	Negative LVDS differential clock input (Even clock)	
21	RxECLK+	Positive LVDS differential clock input (Even clock)	
22	RxE3-	Negative LVDS differential data input (Even data)	
23	RxE3+	Positive LVDS differential data input (Even data)	
24	GND	Ground	
25	NC	No connection (for AUO test only. Do not connect)	
26	NC	No connection (for AUO test only. Do not connect)	

TAILOR PIXELS TECHNOLOGY CO., LTD.

Product Specification

27	NC	No connection (for AUO test only. Do not connect)	
28	VDD	Power Supply Input Voltage	
29	VDD	Power Supply Input Voltage	
30	VDD	Power Supply Input Voltage	

3.3 Electrical Characteristics

3.3.1 Absolute Maximum Rating

Permanent damage may occur if exceeding the following maximum rating.

Symbol	Description	Min	Мах	Unit	Remark
VDD	Power Supply Input Voltage	GND-0.3	6.0	[Volt]	Ta=25⊡

3.3.2 Recommended Operating Condition

Symbol	Description	Min	Тур	Мах	Unit	Remark
VDD	Power supply Input voltage	4.5	5.0	5.5	[Volt]	
	Power supply	-	0.6	0.72	[A]	VDD= 5.0V, Black Pattern, Fv=60Hz
	Input Current (RMS)		0.72	0.87	[A]	VDD= 5.0V, Black Pattern, Fv=75Hz
	VDD Power Consumption	-	3	3.6	[Watt]	VDD= 5.0V, Black Pattern, Fv=60Hz
			3.6	4.32	[Watt]	VDD= 5.0V, Black Pattern, Fv=75Hz
IRush	Inrush Current	-	-	3.0	[A]	Note 3-1
VDDrp	Allowable VDD Ripple Voltage	-	-	500	[mV]	VDD= 5.0V, Black Pattern, Fv=75Hz

Note 3-1: Inrush Current measurement:

e duration of VDD rising time: 470us.

3.4 Signal Characteristics

3.4.1 LCD Pixel Format

3.4.2 LVDS Data Format

- a. O = "Odd Pixel Data" E = "Even Pixel Data"
- b. Refer to 3.4.1 LCD pixel format, the 1st data is 1 (Odd Pixel Data), the 2nd data is 2 (Even Pixel Data) and the last data is 1280 (Even Pixel Data).

3.4.3 Color versus Input Data

The following table is for color versus input data (8bit). The higher the gray level, the brighter the color.

												Col	or Inp	out D	ata											_
Color	Gray Level		RED data (<mark>MSB</mark> :R7, <mark>LSB</mark> :R0)				GREEN data (MSB:G7, LSB:G0)							BLUE data (MSB:B7, LSB:B0)							Remark					
		R7	R6	R5	R4	R3	R2	R1	RO	G7	G6	G5	G4	G3	G2	G1	GO	B7	B6	B5	B4	B3	B2	B1	BO	
Black	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
White	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Gray 127	-	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	
Red	IJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Black
	:	:	:	:	1	1	1	:	1	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	
	L255	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	ம	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Black
Green	:	:	:	:	:	:	:	:	:	1	1	1	1	:	:	:	:	:	:	:	:	:	:	:	:	
	L255	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	
	ம	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Black
Blue	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	L255	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	

3.4.4 LVDS Specification

a. DC Characteristics:

Symbol	Description	Min	Тур	Max	Units	Condition
V _{TH}	LVDS Differential Input High Threshold	-	-	+100	[mV]	V _{CM} = 1.2V
V _{TL}	LVDS Differential Input Low Threshold	-100	-	-	[mV]	V _{CM} = 1.2V
V _{ID}	LVDS Differential Input Voltage	100	-	600	[mV]	
V _{CM}	LVDS Common Mode Voltage	+1.0	+1.2	+1.5	[V]	$V_{TH}-V_{TL} = 200 mV$

LVDS Signal Waveform:

Use RxOCLK- & RxOCLK+ as example.

b. AC Characteristics:

Symbol	Description	Min	Мах	Unit	Remark
F _{DEV}	Maximum deviation of input clock frequency during Spread Spectrum	-	± 3	%	
F _{MOD}	Maximum modulation frequency of input clock during Spread Spectrum	-	200	KHz	

< Spread Spectrum>

Fclk: LVDS Clock Frequency

3.4.5 Input Timing Specification

It only support DE mode, and the input timing are shown as the following table.

Symbol	Descript	Min.	Тур.	Max.	Unit	Remark	
Τv		Period	1036	1066	1873	Th	
Tdisp (v)	Vertical Section	Active	1024	1024	1024	Th	
Tblk (v)		Blanking	12	42	849	Th	
Fv		Frequency	50	60	76	Hz	
Th		Period	730	844	1320	Tclk	
Tdisp (h)	Horizontal Section	Active	640	640	640	Tclk	
Tblk (h)		Blanking	90	204	680	Tclk	
Fh		Frequency	51.8	64	93.7	KHz	Note 3-3
Tclk	LVDS Clock	Period	14.6	18.5	26	ns	1/Fclk
Fclk		Frequency	37.8	54	68.4	MHz	Note 3-4

Note 3-3: The equation is listed as following. Please don't exceed the above recommended value.

Fh (Min.) = Fclk (Min.) / Th (Min.); Fh (Typ.) = Fclk (Typ.) / Th (Typ.); Fh (Max.)= Fclk (Max.) / Th (Min.);

Note 3-4: The equation is listed as following. Please don't exceed the above recommended value.

Fclk (Min.) = Fv (Min.) x Th (Min.) x Tv (Min.); Fclk (Typ.) = Fv (Typ.) x Th (Typ.) x Tv (Typ.); Fclk (Max.) = Fv (Max.) x Th (Typ.) x Tv (Typ.);

Tailorpixels

Product Specification

3.4.6 Input Timing Diagram

3.5 Power ON/OFF Sequence

VDD power,LVDS signal and backlight on/off sequence are as following. LVDS signals from any system shall be Hi-Z state when VDD is off.

Power Sequence Timing

Symbol		Value	11	Remark	
	Min.	Тур.	Max.	Unit	
T1	0.5	-	10	[ms]	
T2	0	-	50	[ms]	
Т3	500	-	_	[ms]	
T4	100	-	-	[ms]	
Т5	0		50	[ms]	Note 3-5 Note 3-6
Т6	0	-	150	[ms]	Note 3-6
Т7	1000	-	-	[ms]	

Note 3-5 : Recommend setting T5 = 0ms to avoid electronic noise when VDD is off.

Note 3-6 : During T5 and T6 period , please keep the level of input LVDS signals with Hi-Z state.

PH2.0-6 (2.0mm X 6)

Product Specification

4 Backlight Unit

4.1 Block Diagram

P001:Input terminal

Pin No.	Symbol	Description	note
1	VCC	Power supply voltage +12V	
2	VCC	Power supply voltage +12V	
3	ON/OFF	Output enable signal	
4	DIM	Dimming signal	
5	GND	Power ground	
6	GND	Power ground	

4.2 Backlight Specification

Parameter		Symbol	Values			Lloit	notos	
		Symbol	Min	Тур	Max	Unit	notes	
LED Driver :								
Power Supply Inpu	it Voltage		VBL	10.2	12.0	13.8	Vdc	1
Power Supply Input	t Current		IBL	-	2.08	2.17	A	1
Power Supply Input Current (In-Rush)			In-rush	-	-	(TBD)	A	V _{BL} =12.0V ExtV _{BR-B} = 100% 3
Power Consumption			PBL	-	25	30	W	1
	On/Off	On	V on	2.5	-	5.5	Vdc	
		Off	V off	-0.3	0.0	0.5	Vdc	
	Brightness Adjust		Fxt\/	30	-	100	%	On Duty
Input Voltage for			LALV BR-B	30	-	100	%	5
Signals	ExtV _{BR-B} Frequency		f _{PWM}	500	-	1500	Hz	
	Pulse Duty Level (PWM)		High Level	2.5	-	5.5	Vdc	HIGH : on duty
			Low Level	0.0	-	0.5	Vdc	LOW : off duty
LED :								
Life Time				30,000	50,000		Hrs	2

notes :

 Electrical characteristics are determined after the unit has been 'ON' and stable for approximately 60 minutes at 25±2°C. The specified current and power consumption are under the typical supply Input voltage 12Vand VBR (ExtVBR-B : 100%), it is total power consumption.

- 2. The life time (MTTF) is determined as the time which luminance of the LED is 50% compared to that of initial value at the typical LED current (ExtVBR-B :100%) on condition of continuous operating in LCM state at 25±2°C.
- 3. The duration of rush current is about 200ms. This duration is applied to LED on time.
- Even though inrush current is over the specified value, there is no problem if I²T spec of fuse is satisfied. ExtV_{BR-B} signal have to input available duty range and sequence.
- 5. After Driver ON signal is applied, $ExtV_{BR-B}$ should be sustained from 30% to 100% more than 500ms. After that, $ExtV_{BR-B}$ 30% and 100% is possible

5 Reliability Test

AUO reliability test items are listed as following table. (Bare Panel only)

Items	Condition	Remark	
Temperature Humidity Bias (THB)	Ta= 50⊟, 80%RH, 300hours		
High Temperature Operation (HTO)	Ta= 50⊟, 50%RH, 300hours		
Low Temperature Operation (LTO)	Ta= 0⊟, 300hours		
High Temperature Storage (HTS)	Ta= 60⊟, 300hours		
Low Temperature Storage (LTS)	Ta= -20⊟, 300hours		
Vibration Test (Non-operation)	Acceleration: 1.5 Grms Wave: Random Frequency: 10 - 200 Hz Sweep: 30 Minutes each Axis (X, Y, Z)		
Shock Test (Non-operation)	Acceleration: 50 G Wave: Half-sine Active Time: 20 ms Direction: ±X, ±Y, ±Z (one time for each Axis)		
Drop Test	Height: 61 cm, package test		
Thermal Shock Test (TST)	-20□/30min, 60□/30min, 100 cycles	Note 5-1	
On/Off Test	On/10sec, Off/10sec, 30,000 cycles		
ESD (Electro Static Discharge)	Contact Discharge: \pm 15KV, 150pF(330 Ω) 1sec, 8 points, 25 times/ point.	Noto 5-2	
	Air Discharge: ± 15KV, 150pF(330Ω) 1sec 8 points, 25 times/ point.	11016 0-2	
Altitude Test	Operation:18,000 ft Non-Operation:40,000 ft		

Note 5-1: a. A cycle of rapid temperature change consists of varying the temperature from -20□ to 60□, and back again. Power is not applied during the test.

b. After finish temperature cycling, the unit is placed in normal room ambient for at least 4 hours before power on.

Note 5-2: EN61000-4-2, ESD class B: Certain performance degradation allowed

No data lost

Self-recoverable

No hardware failures.

TAILOR PIXELS TECHNOLOGY CO., LTD.

23 / <mark>25</mark>

Ver. 01

7. Packing Specification

TBD

7.2 Pallet and shipment information

Itom		Domonia			
Item	Q'ty	Dimension	Weight(kg)	Kemark	
Panel	1	358.5(H)mm × 296.5(V)mm × 10.3(D)mm	1.45		
Cushion	1	-	0.95		
Box	1	434(L)mm x 278(W)mm x 390(H)mm	0.90	without Panel & cushion	
Packing Box	8 pcs/Box	434(L)mm x 278(W)mm x 390(H)mm	13.45	with panel & cushion	
Pallet	1	1150(L)mm x 890(W)mm x 132(H)mm	12.00		
Pallet after Packing	18 boxes/pallet	1150(L)mm x 890(W)mm x 131(H)mm	334.8		