

### Manufacturer Certificated





CERT. No.: 282Q19070712006

CERT. No.: 282E19070712007

# **Product Specification**

Model: <u>TWW12864H-A0</u>

128X64 COG Module

This module uses RoHS material



Tailor Pixels Technology Co., Ltd.

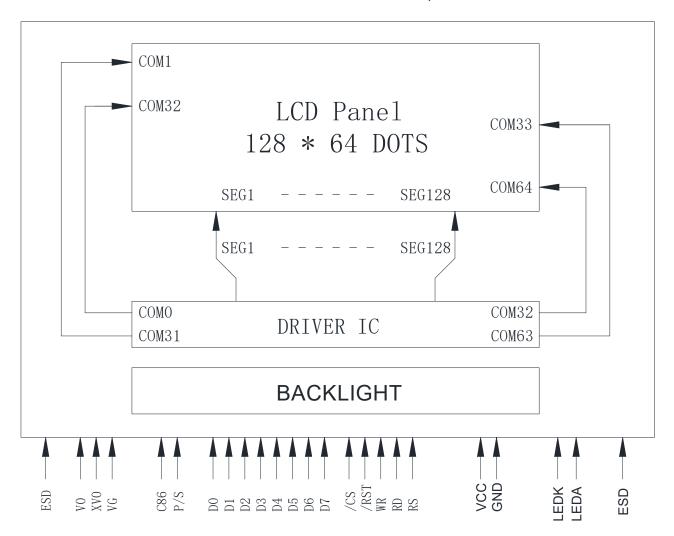
www.tailorpixels.com tailor@tailorpixels.com

Ph: 86-755-8821 2653

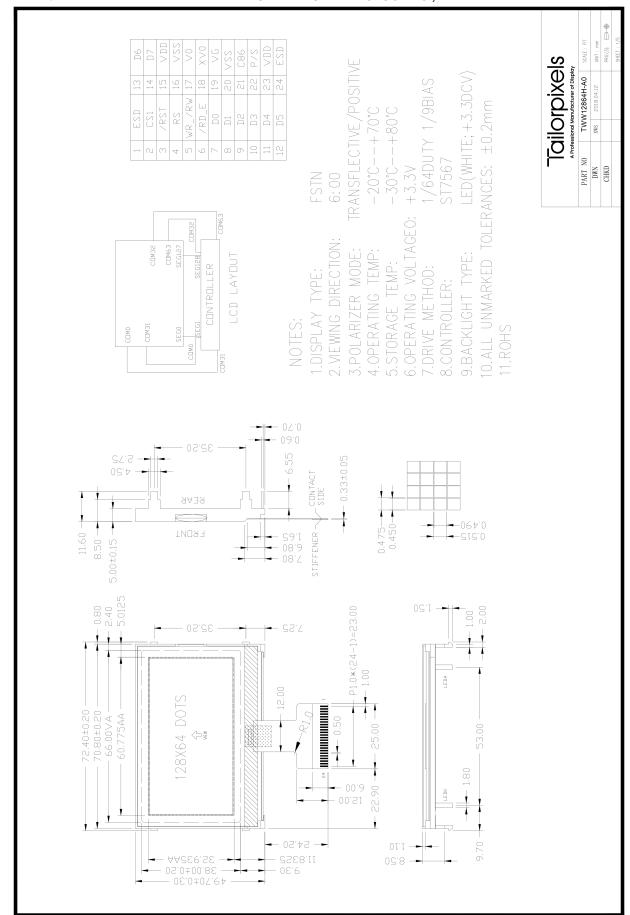
Contents in this document are subject to change without notice. No part of this document can be reproduced or transmitted by any means for any purpose without the written permission of Tailor Pixels Technology Co., Ltd.



# **CONTENTS**


- **■** GENERAL SPECIFICATIONS
- **■** BLOCK DIAGRAM
- MECHANICAL DIMENSIONS
- INTERFACE PIN CONNECTIONS
- ABSOLUTE MAXIMUM RATINGS
- **ELECTRICAL CHARACTERISTICS**
- DISPLAY DATA RAM ADDRESS MAP
- OPTICAL CHARACTERISTICS
- INTERFACE TYPE SELECTION
- OPERATING PRINCIPLES & METHODS
- **■**BACKLIGHT
- **EXAMPLE**
- RELIABILITY
- INSPECTION CRITERIA
- PRECAUTIONS FOR USING LCD MODULES
- USING LCD MODULES




# **■** GENERAL SPECIFICATIONS

| ITEM                   | STANDARD VALUE              | UNIT       |
|------------------------|-----------------------------|------------|
| NUMBER OF GRAPHIC      | 128×64                      |            |
| MODULE DIMENSION       | 72.4×49.7×11.6(MAX)         | mm         |
| EFFECTIVE DISPLAY AREA | 66.0×38.0                   | mm         |
| DOT SIZE               | 0.45×0.49                   | mm         |
| DOT PITCH              | 0.475×0.415                 | mm         |
| LCD TYPE               | FSTN/TRANSFLECTIVE/POSITIVE |            |
| DUTY                   | 1/64duty 1/9bias            |            |
| VIEWING DIRECTION      | 6                           | o'clock    |
| OPERATING TEMPERATURE  | -20~+70                     | $^{\circ}$ |
| STORAGE TEMPERATURE    | -30~+80                     | $^{\circ}$ |
| BACK LIGHT TYPE        | LED                         | ·          |
| BACK LIGHT COLOR       | WHITE                       |            |
| APPROX. WEIGHT         | 35                          | g          |
| ROHS STANDARD          | YES                         |            |

# **■ BLOCK DIAGRAM**



## **■ MECHANICAL DIMENSIONS**



# ■ INTERFACE PIN CONNECTIONS

# TAILOR PIXELS TECHNOLOGY CO., LTD.

| NO | SYMBOL | LEVEL   | FUNCTION                              |               |                                  |                                                                                                                                                  |                   |  |
|----|--------|---------|---------------------------------------|---------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|
| 1  | ESD    | L       | Connect g                             | round.        |                                  |                                                                                                                                                  |                   |  |
| 2  | CS1    | H/L     | Chip selec                            | t input       | pin.                             |                                                                                                                                                  |                   |  |
| 3  | /RST   | H->L->H | Reset inpu                            | ut signa      | ıl.                              |                                                                                                                                                  |                   |  |
|    |        |         | Register se                           | electio       | n input                          | :                                                                                                                                                |                   |  |
| 4  | RS     | H/L     | H: Indicate                           | e that S      | SID is di                        | splay data.                                                                                                                                      |                   |  |
|    |        |         | L: Indicate that SID is control data. |               |                                  |                                                                                                                                                  |                   |  |
| 5  | WR /RW | H/L     | Read/Write                            | executio      | n control                        | pin. When PSB is "H",                                                                                                                            |                   |  |
|    |        |         | C86 MP                                | U Type        | RWR                              | Descriptio                                                                                                                                       | n                 |  |
|    | /DD 5  |         | H                                     | 8800<br>eries | R/W                              | Read/Write control input pir<br>R/W="H": read.<br>R/W="L": write.                                                                                | n.                |  |
| 6  | /RD_E  | H/L     | L                                     | 3080<br>eries | WR                               | Write enable input pin. Signals on D[7:0] will be lat edge of /WR signal.                                                                        |                   |  |
|    |        |         |                                       |               | serial inte                      | rface and should fix to "H" by                                                                                                                   | VDD1 or VDDH.     |  |
| 7  | D0     | L       | Data bus 0                            |               |                                  |                                                                                                                                                  |                   |  |
| 8  | D1     | L       | Data bus 1                            |               |                                  |                                                                                                                                                  |                   |  |
| 9  | D2     | L       | Data bus 2                            |               |                                  |                                                                                                                                                  |                   |  |
| 10 | D3     | H/L     | Data bus 3                            |               |                                  |                                                                                                                                                  |                   |  |
| 11 | D4     | H/L     | Data bus 4                            |               |                                  |                                                                                                                                                  |                   |  |
| 12 | D5     | Н       | Data bus 5                            | 5             |                                  |                                                                                                                                                  |                   |  |
| 13 | D6/SCL | H/L     | Data bus 6                            | 5/ The s      | serial cl                        | ock input.                                                                                                                                       |                   |  |
| 14 | D7/SI  | L       | Data bus 7                            | 7/ The :      | serial d                         | ata input.                                                                                                                                       |                   |  |
| 15 | VDD    | +3.3V   | Logic pow                             | er supp       | oly.                             |                                                                                                                                                  |                   |  |
| 16 | VSS    | 0V      | Ground.                               |               |                                  |                                                                                                                                                  |                   |  |
| 17 | V0     | -       | V0 is the frame.                      | LCD dr        | iving vo                         | oltage for common circ                                                                                                                           | uits at negative  |  |
| 18 | XV0    | -       | XV0 is the frame.                     | LCD d         | riving \                         | voltage for common cir                                                                                                                           | cuits at positive |  |
| 19 | VG     | -       | VG is the I                           | LCD dri       | ving vo                          | Itage for segment circui                                                                                                                         | ts.               |  |
| 20 | VSS    | 0V      | Ground.                               |               |                                  |                                                                                                                                                  |                   |  |
| 21 | C86    | H/L     | C86 selects th                        | e micropr     | ocessor ty                       | pe in parallel interface mode.                                                                                                                   |                   |  |
| 22 | P/S    | H/L     | 86.                                   |               | Parallel<br>Serial 4<br>LICATION | Selected Interface 6800 Series MPU Interface 8080 Series MPU Interface -Line SPI Interface NOTES" and "Microprocessor of the selected interface. | Interface"        |  |
| 23 | VDD    | +3.3V   | Logic pow                             | er sup        | oly.                             |                                                                                                                                                  |                   |  |
| 24 | ESD    | -       | Connect g                             |               |                                  |                                                                                                                                                  |                   |  |

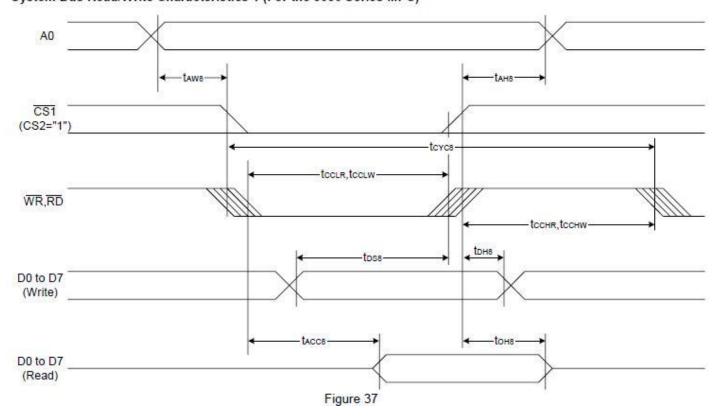
| NO | SYMBOL | LEVEL | FUNCTION            |
|----|--------|-------|---------------------|
| 1  | BL+    | +3.0V | Back light anode.   |
| 2  | BL-    | 0V    | Back light cathode. |

# ■ ABSOLUTE MAXIMUM RATINGS

### TAILOR PIXELS TECHNOLOGY CO., LTD.

| PARAMETER                | SYMBOL   | MIN  | MAX  | UNIT |
|--------------------------|----------|------|------|------|
| Supply voltage for logic | VDD      | -0.3 | 4.0  | V    |
| Supply voltage for LCD   | VOUT-VSS | -0.3 | 15.0 | V    |
| Driving voltage for LCD  | V0-VSS   | -0.3 | 15.0 |      |
| Operating temperature    | TOP      | -20  | +70  | °C   |
| Storage temperature      | TST      | -30  | +80  | °C   |

## **■ ELECTRICAL CHARACTERISTICS**

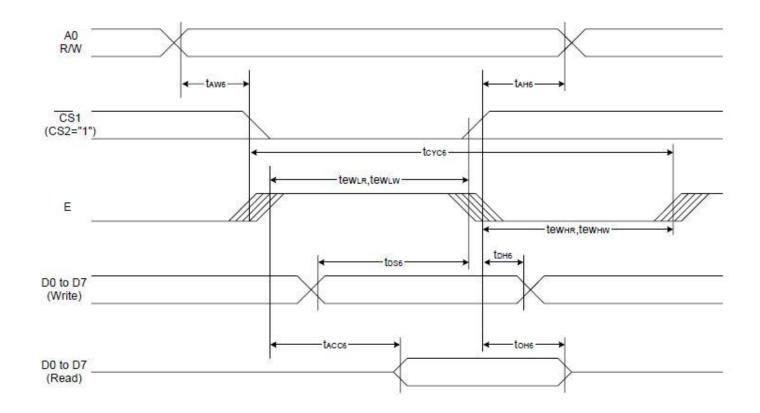

### **▼** DC Characteristics

Condition: VDD=+3.3V±10%, VSS=0V, Ta= +25  $^{\circ}$ C

| PARAMETER                  | SYMBOL | CONDITION  | MIN    | TYP | MAX    | UNIT |
|----------------------------|--------|------------|--------|-----|--------|------|
| Supply voltage for logic   | VDD    |            | 3.15   | 3.3 | 3.5    | V    |
| Supply current for logic   | IDD    |            | 1.8    | 2.0 | 2.5    | mA   |
| Operating voltage for LCD  | V0-XV0 |            | 9.0    | 9.2 | 9.4    | V    |
| Input voltage ' H ' level  | ViH    |            | 0.7VDD |     | VDD    | V    |
| Input voltage ' L ' level  | VIL    |            | 0      |     | 0.3VDD | V    |
| output voltage ' H ' level | Vон    | Іон=-200μА | 2.4    |     |        | V    |
| output voltage ' L ' level | Vol    | IoL=1.6mA  |        |     | 0.4    | V    |

### **▼** AC Characteristics

System Bus Read/Write Characteristics 1 (For the 8080 Series MPU)

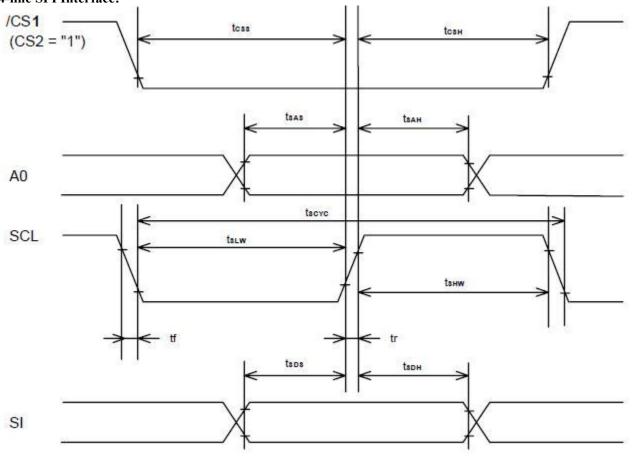



### TAILOR PIXELS TECHNOLOGY CO., LTD.

 $(VDD = 3.3V, Ta = -30 \text{ to } 85^{\circ}C)$ 

| Item                         | Cianal     | Combal | Condition   | Rat  | ting       | Units |
|------------------------------|------------|--------|-------------|------|------------|-------|
| nem                          | Signal     | Symbol | Condition   | Min. | Max.       | Units |
| Address hold time            | -          | tans   |             | 0    | -          |       |
| Address setup time           | A0         | taws   |             | 0    | -          |       |
| System cycle time            |            | tcycs  |             | 240  | -          |       |
| Enable L pulse width (WRITE) | WR         | tccLw  |             | 80   | -          |       |
| Enable H pulse width (WRITE) | VVK        | tcchw  |             | 80   | , <u>-</u> |       |
| Enable L pulse width (READ)  | RD         | tcclr  |             | 140  | -          | Ns    |
| Enable H pulse width (READ)  | T KU       | tochr  |             | 80   |            |       |
| WRITE Data setup time        |            | tosa   |             | 40   | -          |       |
| WRITE Address hold time      | D0 to D7   | tонв   |             | 0    |            |       |
| READ access time             | 7 00 10 07 | taccs  | CL = 100 pF | -    | 70         | 1     |
| READ Output disable time     |            | toнs   | CL = 100 pF | 5    | 50         |       |
|                              |            |        |             |      |            |       |

### System Bus Read/Write Characteristics 2 (For the 6800 Series MPU)




### TAILOR PIXELS TECHNOLOGY CO., LTD.

(Vpp = 3.3V.Ta = -30 to 85°C)

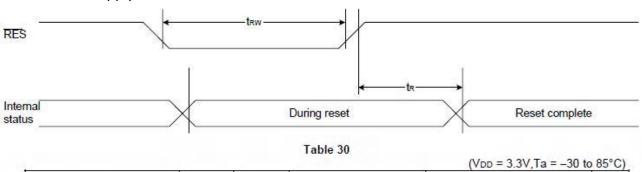
| Itom                         | Cianal   | Cumbal | Condition   | Rat  | ting | Units |
|------------------------------|----------|--------|-------------|------|------|-------|
| Item                         | Signal   | Symbol | Condition   | Min. | Max. | Omis  |
| Address hold time            |          | tане   |             | 0    | _    |       |
| Address setup time           | A0       | taw6   |             | 0    |      |       |
| System cycle time            |          | tcyce  |             | 240  | -    |       |
| Enable L pulse width (WRITE) | WD       | tewsw  |             | 80   | _    | 7     |
| Enable H pulse width (WRITE) | WR       | tewnw  |             | 80   | -    | ns    |
| Enable L pulse width (READ)  | RD       | tewlr  |             | 80   | -    |       |
| Enable H pulse width (READ)  | RD       | tewnr  |             | 140  |      |       |
| WRITE Data setup time        |          | tose   |             | 40   |      |       |
| WRITE Address hold time      | D04- D7  | tоне   |             | 0    | -    |       |
| READ access time             | D0 to D7 | tacce  | CL = 100 pF | _    | 70   |       |
| READ Output disable time     |          | tонв   | CL = 100 pF | 5    | 50   |       |

### The 4-line SPI Interface:



 $(VDD = 2.4 - 3.5V, TA = -40 - 85^{\circ}C)$ 

| Symbol | Parameter                  | Min. | Тур. | Max. | Unit | Conditions |
|--------|----------------------------|------|------|------|------|------------|
| tscyc  | Serial clock cycle         | 250  |      |      | ns   |            |
| tsHW   | Serial clock H pulse width |      |      |      | ns   |            |
| tsLW   | Serial clock L pulse width | 100  |      |      | ns   |            |
| tsas   | Address setup time         | 150  |      |      | ns   |            |
| tSAH   | Address hold time          | 150  |      |      | ns   |            |
| tsps   | Data setup time            | 100  |      |      | ns   |            |
| tSDH   | Data hold time             | 100  |      |      | ns   |            |
| tcss   | /CS serial clock time      | 150  |      |      | ns   |            |
| tcsH   | /CS serial clock time      | 150  |      |      | ns   |            |


<sup>\*1.</sup> The input signal rise time and fall time (tr, tf) are specified at 15ns or less

### **▼** Reset

The ST7567 may be reset by an external active low TTL signal from a MPU or other logic device or it may be reset using the following circuit

The Conditions of power supply at initial power up are shown in table 1.

Table 1. Power Supply Initial Conditions



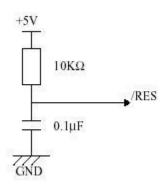
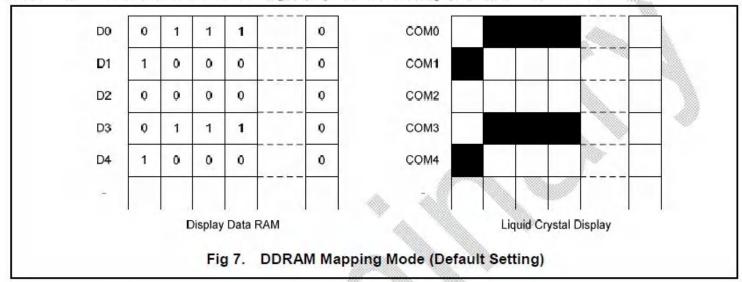
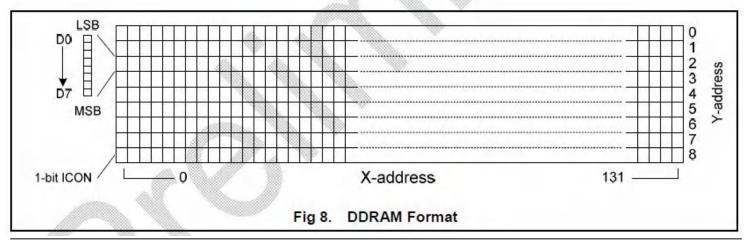

| Item                  | Signal Symbol |        | Condition       |      | Unita |      |       |
|-----------------------|---------------|--------|-----------------|------|-------|------|-------|
|                       | Signal Sym    | Symbol | ymboi Condition | Min. | Typ.  | Max. | Units |
| Reset time            |               | tr     |                 | -    | -     | 1.0  | us    |
| Reset "L" pulse width | /RES          | trw    |                 | 1.0  | _     | _    | us    |

Table 31

|                       |                    |        |           | (V   | DD = 2.7V | 1a = -301 | (O 85°C) |
|-----------------------|--------------------|--------|-----------|------|-----------|-----------|----------|
| Itom                  | Item Signal Symbol | Sumbol | Condition |      | Haita     |           |          |
| item                  | Signal             | Symbol | Condition | Min. | Typ.      | Max.      | Units    |
| Reset time            |                    | tr     |           | _    |           | 2.0       | us       |
| Reset "L" pulse width | /RES               | trw    |           | 2.0  | -         | -         | us       |

<sup>\*1</sup> All timing is specified with 20% and 80% of Vod as the standard.


<sup>\*2.</sup> All timing is specified using 20% and 80% of Vpp as the standard.




### ■ DISPLAY DATA RAM ADDRESS MAPO

(if initial display line is 1DH)

ST7567 is built-in a RAM with 65X132 bit capacity which stores the display data. The display data RAM (DDRAM) store the dot data of the LCD. It is an addressable array with 132 columns by 65 rows (8-page with 8-bit and 1-page with 1-bit). The X-address is directly related to the column output number. Each pixel can be selected when the page and column addresses are specified (please refer to Fig 7 for detailed illustration). The rows are divided into: 8 pages (Page-0 ~ Page-7) each with 8 lines (for COM0~63) and Page-8 with only 1 line (COMS, for icon). The display data (D7~D0) corresponds to the LCD common-line direction and D0 is on top. All pages can be accessed through D[7:0] directly except icon page. Icon RAM uses only 1-bit of data bus (D0). Refer to Fig 8 for detailed illustration. The microprocessor can write to and read from (only Parallel interfaces) DDRAM by the I/O buffer. Since the LCD controller operates independently, data can be written into DDRAM at the same time as data is being displayed without causing the LCD flicker or data-conflict.







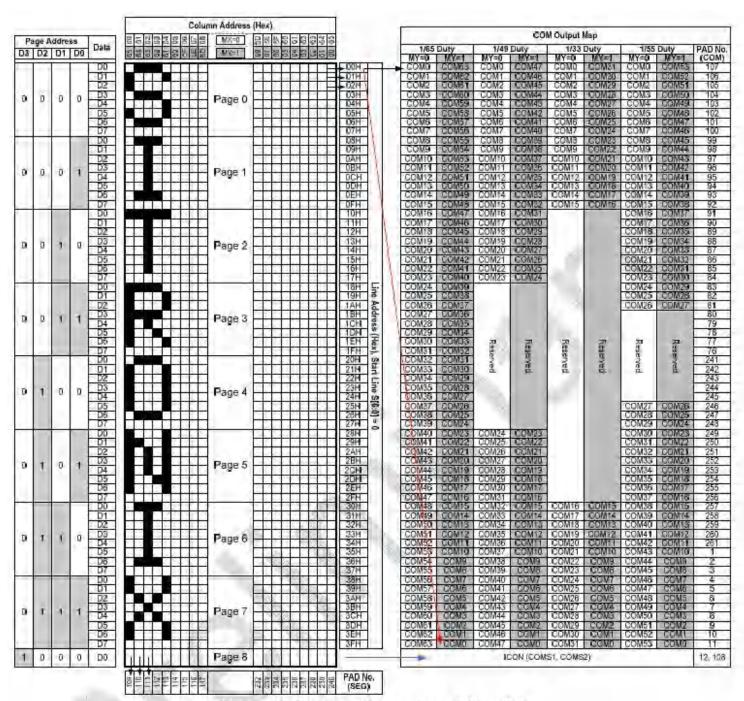
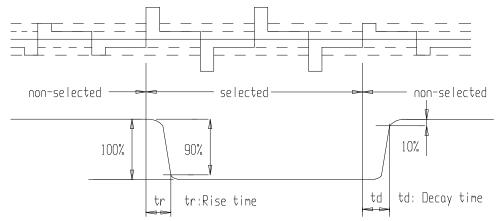


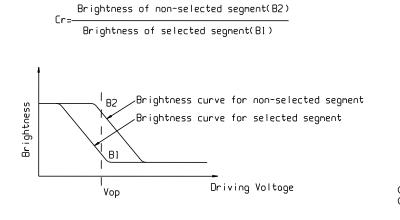

Fig 9. DDRAM and Output Map (COM/SEG)

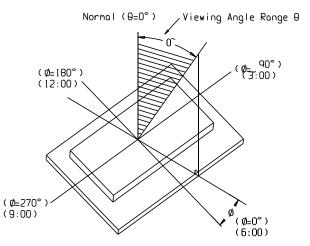



### OPTICAL CHARACTERISTICS

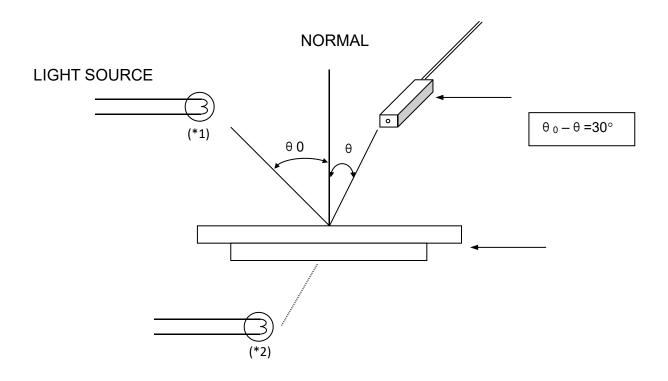
Test instrument is LCD-5000, made in Japan

| Item              | Symbol | Condition    | Min | Тур | Max | Unit | Remarks       | Note |
|-------------------|--------|--------------|-----|-----|-----|------|---------------|------|
|                   |        | -20°C        | 9.4 | 9.6 | 9.8 | V    |               |      |
| Operating voltage | Vop    | <b>+25</b> ℃ | 9.0 | 9.2 | 9.4 | V    |               |      |
|                   |        | +70°C        | 8.8 | 9.0 | 9.2 | V    |               |      |
| D 1'              | Tr     |              |     | 185 |     | ms   |               | 1    |
| Response time     | Td     |              |     | 200 |     | ms   |               | 1    |
| Contrast ratio    | Cr     |              |     | 4   |     |      |               | 2    |
| Viewing angle     | 0      | C~>6         | -40 |     | 40  | deg  | <b>Ø</b> =0 ° | 3    |
| range             | θ      | Cr≥6         | -40 |     | 40  | deg  | Ø=180°        | 3    |


# **▼** Definition Of Viewing Angle


Note1: Definition of response time




Note2: Definition of contrast ratio 'Cr'

Note3: Definition of viewing angle range ' $\theta$ '





Note4: Measuring Instruments For Electro-optical Characteristics



- \*1.Light source position for measuring the reflective type of LCD panel
- \*2.Light source position for measuring the transflective / transmissive types of LCD panel

## ■ INTERFACE TYPE SELECTION

### **▼** Serial Interface

The interface selection is controlled by C86 and PSB pins. The selection for parallel or serial interface is shown in Table 1.

### Table 1. Parallel/Serial Interface Mode

| PSB | C86   | CSB | A0 | ERD | RWR | D[7:0]                     | MPU Interface                  |
|-----|-------|-----|----|-----|-----|----------------------------|--------------------------------|
| "H" | "H"   |     |    | E   | R/W | D17-01                     | 6800-series parallel interface |
| "H" | 11 20 | CSB | AO | /RD | WR  | D[7:0]                     | 8080-series parallel interface |
| - L | "X"   |     |    | T-1 | 1   | Refer to serial interface. | 4-Line SPI interface           |

<sup>\*</sup> The un-used pins are marked as "---" and should be fixed to "H" by VDD1 or VDDH.

### Parallel Interface

When PSB= "H", the 8-bit bi-directional parallel interface is enabled and the type of MPU is selected by "C86" pin as shown in Table 2. The data transfer type is determined by signals on A0, ERD and RWR as shown in Table 3.

### Table 2. Microprocessor Selection for Parallel Interface

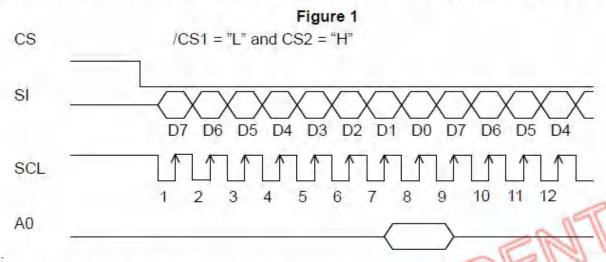
| PSB | C86 | CSB | A0 | ERD | RWR | D[7:0] | MPU Interface                  |
|-----|-----|-----|----|-----|-----|--------|--------------------------------|
| "H" | "H" | COD | 40 | E   | R/W | D(7:0) | 6800-series parallel interface |
| "H" | "[" | CSB | A0 | /RD | WR  | D[7:0] | 8080-series parallel interface |

### Table 3. Parallel Data Transfer Type

| Commo | on Pins | 6800-   | Series    | 8080-     | Series    | Description                               |  |
|-------|---------|---------|-----------|-----------|-----------|-------------------------------------------|--|
| CSB   | A0      | E (ERD) | R/W (RWR) | /RD (ERD) | /WR (RWR) | Description                               |  |
|       | "H"     | "H"     | "H"       | "L"       | "H"       | Display data read out                     |  |
| uq 2  | "H"     | "H"     | "L"       | "H"       | "L"       | Display data write                        |  |
| "L"   | "L"     | "H"     | "H"       | "L"       | "H"       | Internal status read                      |  |
|       | "L"     | "H"     | "L"       | "H"       | "L"       | Writes to internal register (instruction) |  |

### Setting Serial Interface

| Serial Mode          | PSB | C86 | CSB | A0 | ERD | RWR | D[7:0]         |
|----------------------|-----|-----|-----|----|-----|-----|----------------|
| 4-Line SPI interface | "L" | X   | CSB | A0 | n=+ |     | SDA, SCLK,,,,, |


<sup>\*</sup> The un-used pins are marked as "---" and should be fixed to "H" by VDD1 or VDDH.

<sup>\*</sup> C86 is marked as "X" and can be fixed to "H" or "L".

### TAILOR PIXELS TECHNOLOGY CO., LTD.

When the serial interface has been selected (P/S = "L"), then when the chip is in active state (/CS1 = "L" and CS2 = "H"), the serial data input (SI) and the serial clock input (SCL) can be received. The serial data is read from the serial data input pin in the rising edge of the serial clocks D7, D6 through D0, in this order. This data is converted to 8 bits of parallel data in the rising edge of eighth serial clock for processing.

The A0 input is used to determine whether or not the serial data input is display data, and when A0 = "L" then the data is command data. The A0 input is read and used for detection of every 8th rising edge of the serial clock after the chip becomes active. Figure 1 is the serial interface signal chart.



### Note:

- When the chip is not active, the shift registers and the counters are reset to their initial states.
- Reading is not possible while in serial interface mode.
- 3. Caution is required on the SCL signal when it comes to line-end reflections and external noise. We recommend that the operation can be rechecked on the actual equipment.



# ■ OPERATING PRINCIPLES & METHODS

# **▼** Control And Display Command

|                           |     | R/W   |    |    | С   | OMMA   | ND BY | ΓE  |     |     |                                                                                  |
|---------------------------|-----|-------|----|----|-----|--------|-------|-----|-----|-----|----------------------------------------------------------------------------------|
| INSTRUCTION               | .A0 | (RWR) | D7 | D6 | D5  | D4     | D3    | D2  | D1  | D0  | DESCRIPTION                                                                      |
| (1) Display ON/OFF        | 0   | 0     | 1  | 0  | 1   | 0      | 1     | 1   | 1   | D   | D=1, display ON<br>D=0, display OFF                                              |
| (2) Set Start Line        | 0   | 0     | 0  | 1  | S5  | S4     | S3    | S2  | S1  | SO  | Set display start line                                                           |
| (3) Set Page Address      | 0   | 0     | 1  | 0  | 1   | 1      | Y3    | Y2  | Y1  | Y0  | Set page address                                                                 |
| (4)                       | 0   | 0     | 0  | 0  | 0   | 1      | X7    | X6  | X5  | X4  | Set column address (MSB)                                                         |
| Set Column Address        | 0   | 0     | 0  | 0  | 0   | 0      | X3    | X2  | X1  | X0  | Set column address (LSB)                                                         |
| (5) Read Status           | 0   | 1     | 0  | MX | D   | RST    | 0     | 0   | 0   | 0   | Read IC Status                                                                   |
| (6) Write Data            | 1   | 0     | D7 | D6 | D5  | D4     | D3    | D2  | D1  | D0  | Write display data to RAM                                                        |
| (7) Read Data             | 1   | 1     | D7 | D6 | D5  | D4     | D3    | D2  | D1  | D0  | Read display data from RAM                                                       |
| (8) SEG Direction         | 0   | 0     | 1  | 0  | 1   | 0      | 0     | 0   | 0   | MX  | Set scan direction of SEG<br>MX=1, reverse direction<br>MX=0, normal direction   |
| (9) Inverse Display       | 0   | 0     | 1  | 0  | 1   | 0      | 0     | 1   | 1   | INV | INV =1, inverse display<br>INV =0, normal display                                |
| (10) All Pixel ON         | 0   | 0     | 1  | 0  | 1   | 0      | 0     | 1   | 0   | AP  | AP=1, set all pixel ON<br>AP=0, normal display                                   |
| (11) Bias Select          | 0   | 0     | 1  | 0  | 1   | 0      | 0     | 0   | 1   | BS  | Select bias setting<br>0=1/9; 1=1/7 (at 1/65 duty)                               |
| (12)<br>Read-modify-Write | 0   | 0     | 1  | 1  | 1   | 0      | 0     | 0   | 0   | 0   | Column address increment:<br>Read:+0 , Write:+1                                  |
| (13) END                  | 0   | 0     | 1  | 1  | 1   | 0      | 1     | 1   | 1   | 0   | Exit Read-modify-Write mode                                                      |
| (14) RESET                | 0   | 0     | 1  | 1  | 1   | 0      | 0     | 0   | 1   | 0   | Software reset                                                                   |
| (15) COM Direction        | 0   | 0     | 1  | 1  | 0   | 0      | MY    | 2   | 8   | -   | Set output direction of COM<br>MY=1, reverse direction<br>MY=0, normal direction |
| (16) Power Control        | 0   | 0     | 0  | 0  | 1   | 0      | 1     | VB  | VR  | VF  | Control built-in power circuit<br>ON/OFF                                         |
| (17) Regulation Ratio     | 0   | 0     | 0  | 0  | 1   | 0      | 0     | RR2 | RR1 | RR0 | Select regulation resistor ratio                                                 |
| (18) Set EV               | 0   | 0     | 1  | 0  | 0   | 0      | 0     | 0   | 0   | 1   | Double command!! Set                                                             |
| (10) SELEV                | 0   | 0     | 0  | 0  | EV5 | EV4    | EV3   | EV2 | EV1 | EV0 | electronic volume (EV) level                                                     |
|                           | 0   | 0     | 1  | 1  | 1   | 1      | 1     | 0   | 0   | 0   | Double command!!                                                                 |
| (19) Set Booster          | 0   | 0     | 0  | 0  | 0   | 0      | 0     | 0   | BL1 | BL0 | Set booster level:<br>00=4X, 01=5X, 10=6X                                        |
| (20) Power Save           | 0   | 0     |    |    | Col | mpound | Comm  | and |     |     | Display OFF + All Pixel ON                                                       |
| (21) NOP                  | 0   | 0     | 1  | 1  | 1   | 0      | 0     | 0   | 1   | 1   | No operation                                                                     |
| (22) Test                 | 0   | 0     | 1  | 1  | 1   | 1      | 1     | 1   | 1   | 1-2 | Do NOT use.<br>Reserved for testing.                                             |

Note: Symbol "-" means this bit can be "H" or "L".

### Display ON/OFF

The D flag selects the display mode

| ne D lia | g selects the dis | splay mode | e  |    |    |    |    |    | }  |
|----------|-------------------|------------|----|----|----|----|----|----|----|
| A0       | R/W(RWR)          | D7         | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| 0        | 0                 | 1          | 0  | 1  | 0  | 1  | 1  | 1  | D  |

D=1: Normal Display Mode.

D=0: Display OFF. All SEGs/COMs output with VSS.

### TAILOR PIXELS TECHNOLOGY CO., LTD.

#### Set Start Line

This instruction sets the line address of the Display Data RAM to determine the initial display line. The display data of the specified line address is displayed at the top row (COM0) of the LCD panel.

| A0 | R/W(RWR) | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|----|----------|----|----|----|----|----|----|----|----|
| 0  | 0        | 0  | 1  | S5 | S4 | S3 | S2 | S1 | S0 |

| S5 | S4 | S3 | S2 | S1 | S0  | Line address |
|----|----|----|----|----|-----|--------------|
| 0  | 0  | 0  | 0  | 0  | 0   | 0            |
| 0  | 0  | 0  | 0  | 0  | 1   | 1            |
| 0  | 0  | 0  | 0  | 1  | 0   | 2            |
| 0  | 0  | 0  | 0  | 1  | 1   | 3            |
|    | 3  | 1  | 9  | 1  | in. |              |
| 1  | 1  | 1  | 1  | 0  | 1   | 61           |
| 1  | 1  | 1  | 1  | 1  | 0   | 62           |
| 1  | 1  | 1  | 1  | 1  | 1   | 63           |

### Set Page Address

Y [3:0] defines the Y address vector address of the display RAM.

| A0 | R/W(RWR) | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|----|----------|----|----|----|----|----|----|----|----|
| 0  | 0        | 1  | 0  | 1  | 1  | Y3 | Y2 | Y1 | YO |

| Y3 | Y2         | Y1 | Y0 | Page Address                                                                                                   | Valid Bit |
|----|------------|----|----|----------------------------------------------------------------------------------------------------------------|-----------|
| 0  | 0          | 0  | 0  | Page0                                                                                                          | D0~ D7    |
| 0  | 0          | 0  | 1  | Page1                                                                                                          | D0~ D7    |
| 0  | 0          | 1  | 0  | Page2                                                                                                          | D0~ D7    |
| 7  | - American | 4  | -  | Manual Comment | -         |
| 0  | 1          | 1  | 0  | Page6                                                                                                          | D0~ D7    |
| 0  | 1          | 1  | 1  | Page7                                                                                                          | D0~ D7    |
| 1  | 0          | 0  | 0  | Page8 (icon page)                                                                                              | D0        |

### Set Column Address of RAM

The range of column address is 0...131. The parameter is separated into 2 instructions. The column address is increased (+1) after each byte of display data access (read/write). This allows MPU accessing DDRAM content continuously. This feature stops at the end of each page (Column Address "83h").

| A0 | R/W(RWR) | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|----|----------|----|----|----|----|----|----|----|----|
| 0  | 0        | 0  | 0  | 0  | 1  | X7 | X6 | X5 | X4 |

| A0 | R/W(RWR) | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|----|----------|----|----|----|----|----|----|----|----|
| 0  | 0        | 0  | 0  | 0  | 0  | Х3 | X2 | X1 | X0 |

| X7 | X6  | X5 | X4 | Х3 | X2 | X1 | X0 | Column address |
|----|-----|----|----|----|----|----|----|----------------|
| 0  | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0              |
| 0  | 0   | 0  | 0  | 0  | 0  | 0  | 1  | 1              |
| 0  | 0   | 0  | 0  | 0  | 0  | 1  | 0  | 2              |
| 0  | 0   | 0  | 0  | 0  | 0  | 1  | 1  | 3              |
| 2  | 3.5 | 2  | 4. | 1  | фу | 2  | 1  | 1 1            |
| 1  | 0   | 0  | 0  | 0  | 0  | 0  | 1  | 129            |
| 1  | 0   | 0  | 0  | 0  | 0  | 1  | 0  | 120            |
| 1  | 0   | 0  | 0  | 0  | 0  | 1  | 1  | 131            |

#### Read Status

Read the internal status of ST7567. The read function is not available in serial interface mode.

| A0 | R/W(RWR) | D7 | D6 | D5 | D4  | D3 | D2 | D1 | D0 |
|----|----------|----|----|----|-----|----|----|----|----|
| 0  | 1        | 0  | MX | D  | RST | 0  | 0  | 0  | 0  |

| Flag | Description                                                                  |
|------|------------------------------------------------------------------------------|
| MX   | MX=0: Normal direction (SEG0->SEG131) MX=1: Reverse direction (SEG131->SEG0) |
| D    | D=0: Display ON D=1: Display OFF                                             |
| RST  | RST=1: During reset (hardware or software reset) RST=0: Normal operation     |

#### Write Data

8-bit data of Display Data from the microprocessor can be written to the RAM location specified by the column address and page address. The column address is increased by 1 automatically so that the microprocessor can continuously write data to the addressed page. During auto-increment, the column address wraps to 0 after the last column is written.

| A0 | R/W(RWR) | D7 | D6 | D5 | D4    | D3   | D2 | D1 | D0 |
|----|----------|----|----|----|-------|------|----|----|----|
| 1  | 0        |    |    |    | Write | Data |    |    |    |

#### Read Data

8-bit data of Display Data from the RAM location specified by the column address and page address can be read to the microprocessor. The read function is not available in serial interface mode.

| A0 | R/W(RWR) | D7 | D6 | D5 | D4   | D3   | D2 | D1 | D0 |
|----|----------|----|----|----|------|------|----|----|----|
| 1  | 1        |    |    |    | Read | Data |    |    |    |

#### SEG Direction

| A0 | R/W(RWR) | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|----|----------|----|----|----|----|----|----|----|----|
| 0  | 0        | 1  | 0  | 1  | 0  | 0  | 0  | 0  | MX |

| Flag | Description                            |  |
|------|----------------------------------------|--|
| MV   | MX=0: Normal direction (SEG0->SEG131)  |  |
| MX   | MX=1: Reverse direction (SEG131->SEG0) |  |

### Inverse Display

This instruction changes the selected and non-selected voltage of SEG. The display will be inversed (white -> Black, Black -> White) while the display data in the Display Data RAM is never changed.

| A0 | R/W(RWR) | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0  |
|----|----------|----|----|----|----|----|----|----|-----|
| 0  | 0        | 1  | 0  | 1  | 0  | 0  | 1  | 1  | INV |

| Flag |                         | Description | - 30 |
|------|-------------------------|-------------|------|
| INIV | INV=0: Normal display   |             | -497 |
| IN∨  | INV =1: Inverse display |             |      |

### All Pixel ON

This instruction will let all segments output the selected voltage and make all pixels turned ON.

| A0 | R/W(RWR) | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|----|----------|----|----|----|----|----|----|----|----|
| 0  | 0        | 1  | 0  | 1  | 0  | 0  | 1  | 0  | AP |

| Flag | Description           |  |  |  |  |  |  |
|------|-----------------------|--|--|--|--|--|--|
| AD   | AP =0: Normal display |  |  |  |  |  |  |
| AP   | AP =1: All pixels ON  |  |  |  |  |  |  |

#### Bias Select

Select LCD bias ratio of the voltage required for driving the LCD.

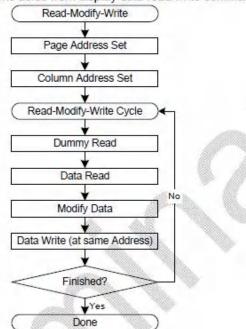
| A0 | R/W(RWR) | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|----|----------|----|----|----|----|----|----|----|----|
| 0  | 0        | 1  | 0  | 1  | 0  | 0  | 0  | 1  | BS |

| District | Bias |      |  |  |  |
|----------|------|------|--|--|--|
| Duty     | BS=0 | BS=1 |  |  |  |
| 1/65     | 1/9  | 1/7  |  |  |  |
| 1/49     | 1/8  | 1/6  |  |  |  |
| 1/33     | 1/6  | 1/5  |  |  |  |
| 1/55     | 1/8  | 1/6  |  |  |  |

### Reference LCD Bias Voltage (1/65 Duty with 1/9 Bias)

| Symbol | Bias Voltage |
|--------|--------------|
| V0     | V0           |
| VG     | 2/9 x V0     |
| VM     | 1/9 x V0     |
| VSS    | VSS          |

### Please Note:

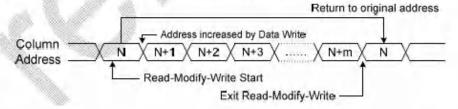

\* VG range: 1.24V ≤ VG < VDD2. \* VM range: 0.62V ≤ VM < VDD2.

### Read-modify-Write

This command is used paired with the "END" instruction. Once this command has been input, the display data read operation will not change the column address, but only the display data write operation will increase the column address (X[7:0]+1). This mode is maintained until the END command is input. This function makes it possible to reduce the load on the MPU when there are repeating data changes in a specified display region, such as a blanking cursor.

| A0 | R/W(RWR) | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|----|----------|----|----|----|----|----|----|----|----|
| 0  | 0        | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0  |

<sup>\*</sup> In Read-modify-Write mode, other instructions aside from display data read/write commands can also be used.






### END

When the END command is input, the Read-modify-Write mode is released and the column address returns to the address it was when the Read-modify-Write instruction was entered.

| A0 | R/W(RWR) | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|----|----------|----|----|----|----|----|----|----|----|
| 0  | 0        | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 0  |



#### RESET

This instruction resets Start Line (S[5:0]), Column Address (X[7:0]), Page Address (Y[3:0]) and COM Direction (MY) to their default setting. Please note this instruction is not complete same as hardware reset (RSTB=L) and cannot initialize the built-in power circuit which is initialized by the RSTB pin. The detailed information is in "Section 7. RESET CIRCUIT".

| A0 | R/W(RWR) | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|----|----------|----|----|----|----|----|----|----|----|
| 0  | 0        | 1  | 1  | 1  | 0  | 0  | 0  | 1  | 0  |

### **COM Direction**

This instruction controls the common output status which changes the vertical display direction. The detailed information can be found in Fig 9.

| A0 | R/W(RWR) | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|----|----------|----|----|----|----|----|----|----|----|
| 0  | 0        | 1  | 1  | 0  | 0  | MY | +  | -  | -  |

| Flag | Description                           |  |
|------|---------------------------------------|--|
| MAN  | MY=0: Normal direction (COM0->COM63)  |  |
| MY   | MY=1: Reverse direction (COM63->COM0) |  |

### **Power Control**

This instruction controls the built-in power circuits. Typically, these 3 flags are turned ON at the same time.

| A0 | R/W(RWR) | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|----|----------|----|----|----|----|----|----|----|----|
| 0  | 0        | 0  | 0  | 1  | 0  | 1  | VB | VR | VF |

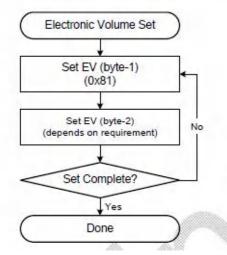
| Flag |                                                         | Description |  |
|------|---------------------------------------------------------|-------------|--|
| VB   | VB=0: Built-in Booster OFF<br>VB=1: Built-in Booster ON |             |  |
| VD   | VR=0: Built-in Regulator OFF                            |             |  |
| VR   | VR=1: Built-in Regulator ON                             |             |  |
| \/F  | VF=0: Built-in Follower OFF                             |             |  |
| VF   | VF=1: Built-in Follower ON                              |             |  |

### Regulation Ratio

This instruction controls the regulation ratio of the built-in regulator.

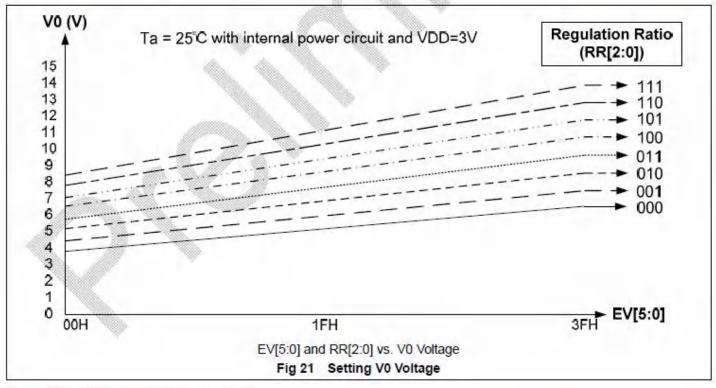
| A0 | R/W(RWR) | D7 | D6 | D5 | D4 | D3 | D2  | D1  | D0  |
|----|----------|----|----|----|----|----|-----|-----|-----|
| 0  | 0        | 0  | 0  | 1  | 0  | 0  | RR2 | RR1 | RR0 |

| RR2 | RR1 | RR0 | Regulation Ratio (RR) |
|-----|-----|-----|-----------------------|
| 0   | 0   | 0   | 3.0                   |
| 0   | 0   | 1   | 3.5                   |
| 0   | 1   | 0   | 4.0                   |
| 0   | 1   | 1   | 4.5                   |
| 1   | 0   | 0   | 5.0                   |
| 1   | 0   | 1   | 5.5                   |
| 1   | 1   | 0   | 6.0                   |
| 1   | 1   | 1   | 6.5                   |
|     |     |     |                       |


The operation voltage (V0) calculation formula is shown below: (RR comes from Regulation Ratio, EV comes from EV[5:0])  $V0 = RR \times [1 - (63 - EV) / 162] \times 2.1$ , or  $V0 = RR \times [(99 + EV) / 162] \times 2.1$ 

| SYMBOL     | REGISTER | VALUE                             |
|------------|----------|-----------------------------------|
| RR RR[2:0] |          | 3, 3.5, 4, 4.5, 5, 5.5, 6 and 6.5 |
| EV         | EV[5:0]  | 0~63                              |

### Set EV


This is double byte instruction. The first byte set ST7567 into EV adjust mode and the following instruction will change the EV setting. That means these 2 bytes must be used together. They control the electronic volume to adjust a suitable V0 voltage for the LCD.

| A0 | R/W(RWR) | D7 | D6 | D5  | D4  | D3  | D2  | D1  | D0  |
|----|----------|----|----|-----|-----|-----|-----|-----|-----|
| 0  | 0        | 1  | 0  | 0   | 0   | 0   | 0   | 0   | 1   |
| 0  | 0        | 0  | 0  | EV5 | EV4 | EV3 | EV2 | EV1 | EV0 |



### TAILOR PIXELS TECHNOLOGY CO., LTD.

The maximum voltage that can be generated is dependent on the VDD2 voltage and the loading of LCD module. There are 8 V0 voltage curve can be selected. It is recommended the EV should be close to the center (1FH) for easy contrast adjustment. Please refer to the "Selection of Application Voltage" section for detailed information.

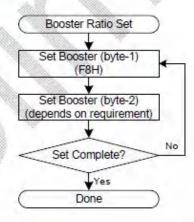


### Power Save (Compound Instruction)

This is compound instruction. The 1<sup>st</sup> instruction is Display OFF (D=0) and the 2<sup>nd</sup> instruction is All Pixel ON (AP=1). The Power Save mode starts the following procedure: (the display data and register settings are still kept except D-Flag and AP-Flag)

- Stops internal oscillation circuit;
- Stops the built-in power circuits;
- Stops the LCD driving circuits and keeps the common and segment outputs at VSS.




After exiting Power Save mode, the settings will return to be as they were before.



### Set Booster

This is double byte instruction. The first byte set ST7567 into booster configuration mode and the following instruction will change the booster setting. That means these 2 bytes must be used together. They control the built-in booster circuit to provide the power source of the built-in regulator. ST7567 booster is built-in booster capacitors. The only external component is a keep capacitor between V0 and XV0. Booster level can be changed with instruction only without changing hardware connection.

| A0 | R/W(RWR) | D7 | D6 | D5 | D4 | D3 | D2 | D1  | D0  |
|----|----------|----|----|----|----|----|----|-----|-----|
| 0  | 0        | 1  | 1  | 1  | 1  | 1  | 0  | 0   | 0   |
| 0  | 0        | 0  | 0  | 0  | 0  | 0  | 0  | BL1 | BLO |



### NOP

"No Operation" instruction. ST7567 will do nothing when receiving this instruction.

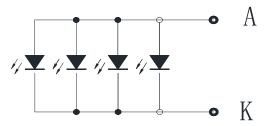
| A0 | R/W(RWR) | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|----|----------|----|----|----|----|----|----|----|----|
| 0  | 0        | 1  | 1  | 1  | 0  | 0  | 0  | 1  | 1  |

#### Test

The test mode is reserved for IC testing. Please don't use this instruction. If the test mode is enabled accidentally, it can be cleared by: issuing an "L" pulse on RSTB pin, issuing RESET instruction or issuing NOP instruction.

| A0 | R/W(RWR) | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|----|----------|----|----|----|----|----|----|----|----|
| 0  | 0        | 1  | 1  | 1  | 1  | 1  | 1  | 1  | -  |

Note: "-" means "1" or "0".



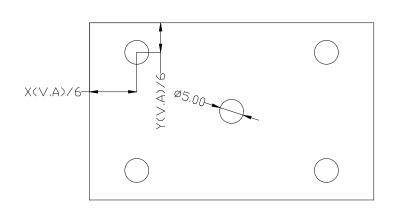

## **■** BACKLIGHT

## **BACKLIGHT TYPE**

Backlight Type: LED

# **POWER SUPPLY FOR BACKLIGHT**

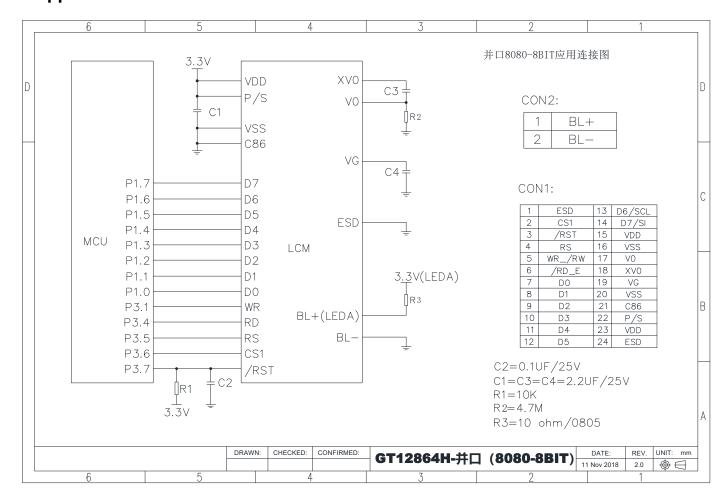



## **• ABSOLUTE MAXIMUM RATING**

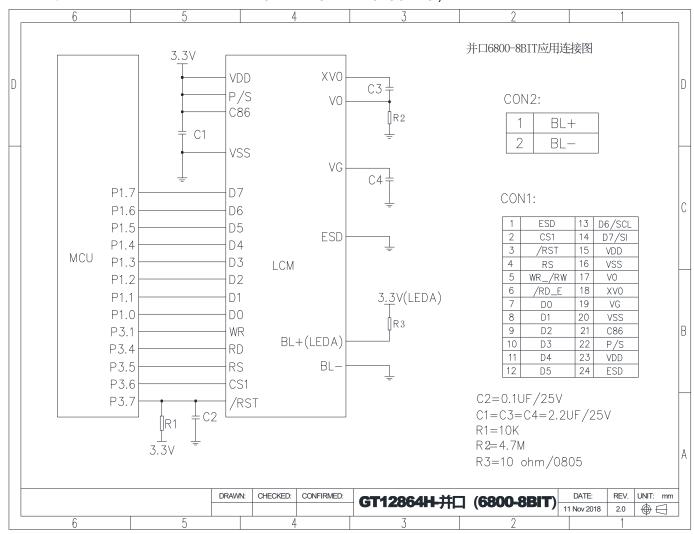
| PARAMETER                        | SYMBOL | CONDITION                     | MIN   | MAX | UNIT                   |
|----------------------------------|--------|-------------------------------|-------|-----|------------------------|
| Absolute maximum forward current | Ifm    |                               |       | 100 | mA                     |
| Peak forward current             | Ifp    | 1 msec plus 10%<br>Duty cycle |       | 180 | mA                     |
| Reverse voltage                  | Vr     |                               |       | 5.0 | V                      |
| Operating temperature            | TOP    |                               | -20   | +70 | $^{\circ}\!\mathbb{C}$ |
| Storage temperature              | TST    |                               | -30   | +80 | $^{\circ}\!\mathbb{C}$ |
| Life                             | Hour   | If =60mA                      | 80000 |     | Н                      |

# **ELECTRICAL-OPTICAL CHARACTERISTICS**

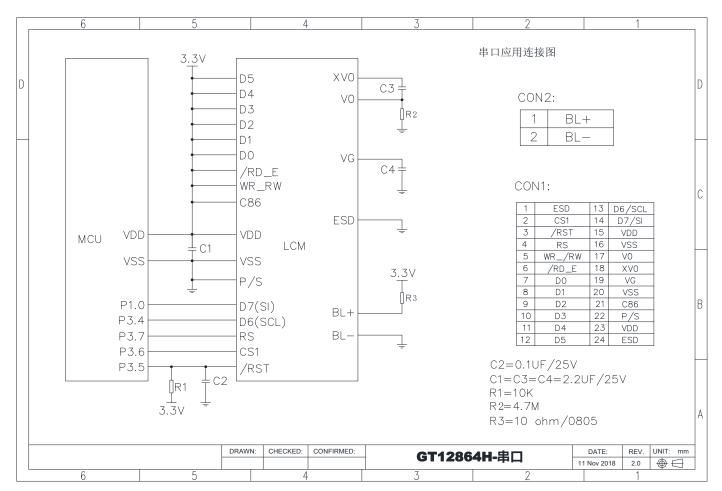
| PARAMETER         | SYMBOL                | CONDITION | MIN  | TYP | MAX  | UNIT  |
|-------------------|-----------------------|-----------|------|-----|------|-------|
| Forward voltage   | Vf<br>(LED(+)-LED(-)) | If=60mA   | 2.6  | 3.0 | 3.2  | V     |
| Forward current   | If                    |           |      | 60  | 80   | mA    |
| Reverse current   | lr                    | VR=5.0V   |      |     | 60   | μΑ    |
| Chromaticity      | X                     | If-C0m A  | 0.28 |     | 0.32 |       |
| Coordinates ranks | Υ                     | If=60mA   | 0.28 |     | 0.32 |       |
| Luminance         | Lv                    | If=60mA   | 200  |     |      | cd/m² |


Note: The Master Screen's luminance is the average value of 5 points, and The Lymin./Lymax. is not less than 70%. The measurement instrument is BM-7 luminance Colorimeter. The aperture is Ф5 mm.






# **■ EXAMPLE**


# **▼** Application Circuit



### TAILOR PIXELS TECHNOLOGY CO., LTD.



### TAILOR PIXELS TECHNOLOGY CO., LTD.



### Programme

:D0~D7: P1 □

CS1 bit p3.6
RESETB bit P3.5
RS bit P3.7
WR\_RW BIT P3.1
E\_RD BIT P3.4
;SI BIT P1.0
;SCL BIT P3.4

INIT: : 初始化

MOV A, #0e2H ;11100010 Software Reset LCALL WCOM ;initialize the internal status

LCALL DELAY

### TAILOR PIXELS TECHNOLOGY CO., LTD.

| ;<br>MOV                | А, #02СН         | ;Set Power Control Register                                                              |
|-------------------------|------------------|------------------------------------------------------------------------------------------|
| (A=00101111<br>LCALL    |                  | ;internal voltage follower circuit is ON ;XO, X1, X2=1, 1, 1                             |
| LCALL                   | DELAY            |                                                                                          |
| MOV<br>(A=00101111      | A, #02EH         | ;Set Power Control Register<br>;internal voltage follower circuit is ON                  |
| LCALL<br>LCALL          | WCOM<br>DELAY    | ;X0, X1, X2=1, 1, 1                                                                      |
| ,<br>MOV<br>(A=00101111 | A, #02FH         | ;Set Power Control Register                                                              |
| LCALL<br>LCALL          | WCOM DELAY       | ; internal voltage follower circuit is ON; X0, X1, X2=1, 1, 1                            |
| MOV<br>LCALL            | A, #025H<br>WCOM | ;A=00100101 (1+Rb/Ra)ratio=5.5 Set internal Regulator resistor ratio ;                   |
| MOV<br>LCALL            | A,#OA2H<br>WCOM  | ;A=10100010 Set LCD Bias: 1/9 (DUTY=1/65)                                                |
| MOV<br>LCALL            | A,#081H<br>WCOM  | ;A=10000001 Set reference voltage mode                                                   |
| MOV<br>LCALL            | A, #23<br>WCOM   | ;A=00011110 ?=30                                                                         |
| MOV<br>LCALL            | A, #0C8H<br>WCOM | ;A=11001000 COM63~COM0 Set COM Output Scan Direction<br>;X3=0: normal mode               |
| MOV<br>LCALL            | A,#OAOH<br>WCOM  | ;A=10100000 SEGO~SEG131 Set Segment Re-map<br>;X0=1:column address 83H is mapped to SEG0 |
| MOV<br>LCALL            | A,#060H<br>WCOM  | ;A=01000000 Set Display start Line<br>;COMO                                              |
| ,<br>MOV<br>LCALL       | A,#0F8H<br>WCOM  | ;A=11111000 Set Display start Line<br>;COMO                                              |
| MOV                     | A, #000H<br>WCOM | ; A=00000000 *4 BOOSTER                                                                  |
| MOV<br>LCALL            | A,#OA6H<br>WCOM  | ;A=10100110 Set Normal/Reverse display<br>;XO=0: normal display                          |
| MOV<br>LCALL<br>RET     | A,#OAFH<br>WCOM  | ;A=10101111 Set Display On/Off                                                           |

TEST:

mov r3, #00 ;测试画面

29

### TAILOR PIXELS TECHNOLOGY CO., LTD.

```
MOV
                    R2, #0B0H
TEST2:
           MOV
                    A, R2
                                     ;set page address
           LCALL
                    WCOM
           MOV
                                     ;set column address MSB
                    A, #010H
           LCALL
                    WCOM
           MOV
                    A, #01H
                                     ;set column address LSB
           LCALL
                    WCOM
                               :132/6=22 set (6*8)*(22-5) characters
           MOV
                    R1, #22
TEST1:
           MOV
                    DPTR, #CHAR
           MOV
                    RO, #06H
TESTO:
           MOV
                    A, R3
           MOVC
                    A, @A+DPTR
           LCALL
                    WDATA
           INC
                    DPTR
           DJNZ
                    RO, TESTO
           DJNZ
                    R1, TEST1
           INC
                    R2
           CJNE
                    R2, #0B8H, TEST2
           RET
DISPLAY:
                                    :显示图片
           MOV
                  DPTR, #BM
           MOV
                      R6, #0B0H
DISPLAYO:
           MOV
                    A, R6
           LCALL
                    WCOM
DISPLAY1:
           MOV
                    A, #10H
                                    ;set column address MSB; set column low bit address
           LCALL
                    WCOM
           MOV
                    A, #01H
                                    ;set column address LSB; set column hige bit address
           LCALL
                    WCOM
                                      ;SEG=106
           MOV
                      RO, #128
DISPLAY2:
           MOV
                    A, #0
           MOVC
                      A, @A+DPTR
          LCALL
                    WDATA
                                     ;write data
                                   :DPTR+1
           INC
                  DPTR
           DJNZ
                    RO, DISPLAY2
                                     ;scan 106 SEG
           INC
                                       ;PAGE+1
                    R6, #0B8H, DISPLAYO ; when the page=8, LCALL DISPLAYO
           CJNE
          RET
;8080-8BIT INTERFACE
· *************
WCOM:
       ; LCALL
                      CHECK BUSY
       CLR
               RS
                 TRANSMIT
       1cal1
```

RET

### TAILOR PIXELS TECHNOLOGY CO., LTD.

```
WDATA: ; LCALL
                  CHECK BUSY
       SETB
              RS
TRANSMIT:
            CS
      clr
      CLR
            WR_RW
      setb
             E_RD
      NOP
      MOV
             P1, A
                         ;8080 INTERFACE
      setb
            wr_rw
       RET
;6800-8BIT INTERFACE
WCOM:
      ; LCALL
                  CHECK BUSY
      CLR
             RS
      1cal1
              TRANSMIT
      RET
                  CHECK_BUSY
WDATA:
      ; LCALL
       SETB
             RS
TRANSMIT:
             CS
      clr
      CLR
            WR_RW
      setb
             E_RD
      NOP
      MOV
             P1, A
      CLR
             RD
                        ;6800 INTERFACE
      RET
;**********
; SERIAL 4-LINE SPI INTERFACE
WCOM:
                                 ;写指令
         CLR
                  CS1
                     ;active IC
         CLR
                  RS
                      ; prepare the instruction for writing
         JMP
                 WRITE
                                  ;写数据
WDATA:
         CLR
                 CS1 ; active IC
         SETB
                  RS
                      ;ready to read data
WRITE:
         CLR
                 SCLK
         MOV
                   48h, #08
WRITE1:
         RLC
                 A
         MOV
                 SDI, C
                         ;sdi=1
```

### TAILOR PIXELS TECHNOLOGY CO., LTD.

SETB SCLK
CLR SCLK
NOP
NOP
NOP
NOP
DJNZ 48h, WRITE1; 8 cycle(8 bit data)
RET

;全显 CHAR: DΒ OFFH, OFFH, OFFH, OFFH, OFFH ;横线 DΒ OAAH, OAAH, OAAH, OAAH, OAAH DΒ 055Н, 055Н, 055Н, 055Н, 055Н, 055Н ;横线 OFFH, 000H, 0FFH, 000H, 0FFH, 000H ;竖线 DΒ 055H, 0AAH, 055H, 0AAH, 055H, 0AAH ;雪花 DΒ 092Н, 054Н, 0FEH, 054Н, 092Н, 000Н DΒ ;\*

### **■ RELIABILITY**

## **▼** Content of Reliability Test

|     |                                          | Environmental Test                                                                                                                |                           |                            |
|-----|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------|
| No. | Test Item                                | Content of Test                                                                                                                   | Test Condition            | Applicable<br>Standard     |
| 1   | High temperature storage                 | Endurance test applying the high storage temperature for a long time.                                                             | 80 °C<br>200 hrs          |                            |
| 2   | Low temperature storage                  | Endurance test applying the low storage temperature for a long time.                                                              | -30 °C<br>200 hrs         |                            |
| 3   | High temperature operation               | Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.            | 70 °C<br>200 hrs          |                            |
| 4   | Low temperature operation                | Endurance test applying the electric stress under low temperature for a long time.                                                | -20 °C<br>200 hrs         |                            |
| 5   | High temperature / Humidity storage      | Endurance test applying the high temperature and high humidity storage for a long time.                                           | 50°C,<br>90%RH<br>96 hrs  | MIL-202E-103B<br>JIS-C5023 |
| 6   | High temperature /<br>Humidity operation | Endurance test applying the electric stress (Voltage & Current) and temperature / humidity stress to the element for a long time. | 40°C<br>90%RH<br>96 hrs   | MIL-202E-103B<br>JIS-C5023 |
| 7   | Temperature cycle                        | Endurance test applying the low and high temperature cycle.  -10°C 25°C 60°C 30min.  1 cycle                                      | -10°C / 60°C<br>10 cycles |                            |

### TAILOR PIXELS TECHNOLOGY CO., LTD.

|    | Mechanical Test         |                                                           |                                                                           |                 |  |  |  |  |  |
|----|-------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------|-----------------|--|--|--|--|--|
|    |                         | Endurance test applying the vibration during              | $10\sim22$ Hz $\rightarrow1.5$ mmp-p<br>$22\sim500$ Hz $\rightarrow1.5$ G | MIL-202E-201A   |  |  |  |  |  |
| 8  | Vibration test          | Vibration test transportation and using.                  |                                                                           | JIS-C5025       |  |  |  |  |  |
|    |                         | duisportuionana using.                                    | Total 0.5hrs                                                              | JIS-C7022-A-10  |  |  |  |  |  |
|    |                         | Constructional and mechanical endurance                   | 50G half sign                                                             |                 |  |  |  |  |  |
| 9  | Shock test              | Shock test test applying the shock during transportation. | wave 11 msedc                                                             | MIL-202E-213B   |  |  |  |  |  |
|    |                         | test applying the shock during transportation.            | 3 times of each direction                                                 |                 |  |  |  |  |  |
| 10 | Atmospheric             | Endurance test applying the atmospheric                   | 115 mbar                                                                  | MIL-202E-105C   |  |  |  |  |  |
| 10 | pressure test           | pressure during transportation by air.                    | 40 hrs                                                                    | WIIL-202E-103C  |  |  |  |  |  |
|    |                         | Others                                                    |                                                                           |                 |  |  |  |  |  |
|    |                         | Endurance test applying the electric stress to            | $VS=800V$ , $RS=1.5$ k $\Omega$                                           |                 |  |  |  |  |  |
| 11 | Static electricity test | the terminal.                                             | CS=100 pF                                                                 | MIL-883B-3015.1 |  |  |  |  |  |
|    |                         | uie terriniai.                                            | 1 time                                                                    |                 |  |  |  |  |  |

<sup>\*\*\*</sup> Supply voltage for logic system = 3.3V. Supply voltage for LCD system = Operating voltage at 25°C.

### ■ INSPECTION CRITERIA

### 1. Objective

The criteria is applied for consolidating the LCM quality standard between AVD and customer in finished products acceptance inspection and shipment, to guarantee the products quality to meet with customer's demand.

### 2. Scope

2.1 This criteria is applicable to all the LCM products produced by AVD.

### 3. Inspection equipment

Function Tester 、 Vernier Calipers 、 Microscope 、 Magnifier 、 ESD Wrist Strap 、 Finger Cover 、 Labels 、 High-Low Temperature Oven 、 Refrigerator 、 Constant Voltage Power Supply (DC) , Desk Lamp, etc.

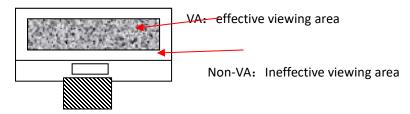
### 4. Sampling Plan and Reference Standard

4.1.1 According to GB/T 2828.1---2003/ISO2859-1:1999, single sampling under normal inspection, general inspection level

| Item of Inspection | Times of Sampling  | AQL Judgment  |
|--------------------|--------------------|---------------|
| Cosmetic           | II Single Sampling | MA=0.4 MI=1.5 |
| Mechanical         | N=3                | C=0           |
| Functional         | II Single Sampling | MA=0.4 MI=1.5 |

- 4.1.2 GB/T 2828.1---2003/ISO2859-1:1999 Counting and sampling procedures and sampling table for Batch-to-Batch Inspection.
- 4.1.3 GB/T 1619.96 Test method for TN LCD.
  - 4.1.4 GB/T 12848.91 General Specification for STN LCD.
- 4.1.5 GB2421-89 Basic Environmental Test Procedures for Electrical and Electronic Products
- 4.1.6 IPC-A-610C Acceptance Condition for Electrical Assemblies.

#### 5. Inspection Condition and Inspection Reference


- 5.1 The ambient temperature and humidity are  $25\pm5\,^{\circ}\mathrm{C}$  and  $45\pm20\%$ RH respectively, and the ambient luminance should be more than 300cd/cm². The distance between inspector's eyes and the LCD panel should be 30cm away. Normally we inspect products with reflected light, when we inspect the LCD produces with backlight turned on, the ambient luminance should be less than 100cd/cm².
- 5.2 The LCD should be test with 45° both left and right side, 0-45° both upside



and downside (if for STN product, -20-55° is needed).



#### 5.3 Definition of VA



- 5.4 Inspection with viewed eyes (not including defect size measure by magnifiers) .
- 5.5 Electrical property
  Inspect with the test jig to meet with the requirement indicated in the approved documents, including the pattern design and the display performance.
  - 5.5.1 Testing voltage (V)
    - 5.5.1.1 According to the inspection of test jig and production specification the test voltage setting is Vop  $\pm$  0.3V when the Vop is under 9.0V, and Vop  $\pm$  3%Vop when the Vop is above 9.0V.
    - 5.5.1.2 As per the product with the fixed voltage the test voltage setting is same as Vop and keeps the constant voltage through the internal circuit. And the limited sample on the voltage range is needed if necessary.
  - 5.5.2 Current Consumption (I): refer to product document and approval drawing to confirm it.

### 6. Inspection Item and Acceptance Standard

- 6.1 Outer dimension: For the outer dimension and the sizes which could influence the assembly at the customer's side, it should be in accordance to the approval drawing, and it belongs to the major defect.
- 6.2 Functional Test:

| No.   | Item                      | Description                                                                                                                                 | MAJ      | MIN | Accept standard |
|-------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|-----------------|
| 6.2.1 | Missing<br>Segment        | Any missing segment caused by an open circuit; Any missing COM, pattern, dot or segment caused by an open circuit or poor crossover contact | <b>√</b> |     | Rejected        |
| 6.2.3 | No display/no<br>action   | No segment is displayed when the product is connected correctly.                                                                            | √        |     | Rejected        |
| 6.2.4 | Display<br>error/abnormal | The display pattern and display order is not as required under the normal scanning procedure.                                               | 4        |     | Rejected        |

### TAILOR PIXELS TECHNOLOGY CO., LTD.

|        |                        | TAILOR PIXELS TECHNOLOGY CO., LTD.                                                                                                                                             |          |          |                                                                                            |
|--------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|--------------------------------------------------------------------------------------------|
| 6.2.5  | Viewing angle wrong    | The direction with the best display of patterns should be as customer required (or refer to the approval samples)                                                              | 1        |          | Rejected                                                                                   |
| 6.2.6  | Display<br>dim/dark    | The contrast of LCD is too dark or too dim under normal operation                                                                                                              | <b>√</b> |          | Beyond the<br>voltage<br>tolerance,<br>Rejected                                            |
| 6.2.7  | Slow response          | Response of some segments is different with others when turned on or off the LCD                                                                                               | ✓        |          | Rejected                                                                                   |
| 6.2.8  | Extra segment          | Display of wiring, or extra pattern, caused by wrong alignment or insufficient corrosion.                                                                                      |          | <b>√</b> | refer to<br>spot/line<br>standard                                                          |
| 6.2.9  | Dim segment            | Under the normal voltage, the contrast of segment are uneven                                                                                                                   |          | <b>√</b> | Reject or refer<br>to samples                                                              |
| 6.2.10 | PI black/white<br>spot | Partial black and white spot are visible while changing display content due to the PI layer defective                                                                          |          | 4        | refer to the spot/line criteria for the visible spots when display image stopped, others O |
| 6.2.11 | pinhole/white<br>spot  | The phenomena of missing patterns when turned on caused by missing of ITO fragment. $d = (X+Y)/2$                                                                              |          | 4        | refer to<br>spot/line<br>standard                                                          |
| 6.2.12 | Pattern<br>distortion  | Width of pattern displayed is wider , narrower or deformed from the specifications caused by wrong alignment, i.e. extra heave or missing:  Ia-Ib ≤1/4W(W is the normal width) |          | 4        | Acceptable<br> Ia-Ib >1/4W,<br>rejected                                                    |
| 6.2.13 | High current           | the current is bigger than regulated value.                                                                                                                                    |          | <b>√</b> | Rejected                                                                                   |

### 6.3 LCD Visual Defect

### 6.3.1 Dot defect(defined within VA, out of VA spots not accounted)

| Defect item                    | Average diameter (d)                                       | Accept numbers | MAJ | MIN |
|--------------------------------|------------------------------------------------------------|----------------|-----|-----|
| Spot defect                    | d≤0.2                                                      | 3              |     |     |
| (black spot, foreign material, | 0.2 <d≤0.25< td=""><td>2</td><td></td><td>√</td></d≤0.25<> | 2              |     | √   |
| nick, scratches, LC defect)    | 0.25 <d≤0.30< td=""><td>1</td><td></td><td></td></d≤0.30<> | 1              |     |     |

# 6.3.2 Line defect(defined within VA, out of VA spots not accounted)

| Defective item                      | length(L)               | width(W)          | Accept numbers | MAJ | MIN      |
|-------------------------------------|-------------------------|-------------------|----------------|-----|----------|
| line defect (scratch, liner foreign | <b>≤</b> 5.0            | ≤0.02             | 3              |     |          |
| material)                           | ≪3.0                    | ≤0.03             | 3              |     | <b>1</b> |
| ~                                   | €3.0                    | ≤0.05             | 1              |     | Ť        |
| note: 1 If the width is higger than | 0.0 1mm it can be treat | ted as spot defec | †              |     |          |

### TAILOR PIXELS TECHNOLOGY CO., LTD.

6.3.3 Polarizer Air Bubble (defined within VA, out of VA spots not accounted)

| Defective item                              | Average diameter (d)                                     | Accept numbers | MAJ | MIN |
|---------------------------------------------|----------------------------------------------------------|----------------|-----|-----|
| polarizer Air Bubble Concave-<br>Convex Dot | d≤0.3                                                    | 3              |     |     |
| ↑ w                                         | 0.3 <d≤0.5< td=""><td>2</td><td></td><td>✓</td></d≤0.5<> | 2              |     | ✓   |
| d=(w+l)/2                                   | 0.5 <d≤0.8< td=""><td>1</td><td></td><td></td></d≤0.8<>  | 1              |     |     |

# 6.3.4 Damaged(For the products with LCD edge expose to outside without mental frame, including products in COG, with H/S or assembled with backlight)

| No.     | Item                             | Accepta           | nce Standard                                        | MAJ             | MIN           |
|---------|----------------------------------|-------------------|-----------------------------------------------------|-----------------|---------------|
|         | Chinanaland                      |                   | (mm)                                                |                 |               |
|         | Chip on lead                     | Х                 | ≤1/8L                                               |                 |               |
|         |                                  | Υ                 | ≤1/3W                                               |                 | <b>√</b>      |
| 6.3.4.1 | X VZ                             | Z                 | ≤1/2t                                               |                 |               |
|         |                                  | Accept<br>number  | 2                                                   |                 |               |
|         | ₩ X                              | When $Y \leq 0.2$ | 2mm, neglect the le<br>and not perforated,          |                 |               |
|         | chip on corner(ITO lead)         |                   | (mm)                                                | MAJ             | MIN           |
|         | chip on corner(iro lead)         | Х                 | Not enter into                                      |                 |               |
|         |                                  | Υ                 | frame epoxy and touch the lead                      |                 |               |
| 6.3.4.2 | Z                                | Z                 | ≤t                                                  |                 | √             |
|         |                                  | Accept<br>numbers | 2                                                   |                 |               |
|         |                                  | Chips on corn     | er refer to 6.3.4.3 ar<br>s on lead, refer to 6.3   |                 | of the frame  |
|         | Chip on sealed area (outer chip) |                   | (mm)                                                | MAJ             | MIN           |
|         |                                  | Х                 | ≤1/8 L                                              |                 |               |
|         |                                  | Υ                 | ≤1/2H                                               |                 |               |
| 6.3.4.3 | V Y                              | Z                 | ≤ 1/2t                                              |                 | √             |
|         |                                  | Accept numbers    | 2                                                   |                 |               |
|         | Z *                              | standard for o    | for inner chip on outer. If chip on the coordinates | pposite side of | ITO lead, the |

## 6.3.5 Others

| No. | Item | Description | MAJ | MIN | Accept standard |
|-----|------|-------------|-----|-----|-----------------|

The width of ITO lead

### TAILOR PIXELS TECHNOLOGY CO., LTD.

| 6.3.5.1 | Newton/ B/G<br>color<br>uniformity<br>not good | There exists more than one color on one product or same batch. |   | <b>√</b> | Reject or refer<br>to limited<br>sample |
|---------|------------------------------------------------|----------------------------------------------------------------|---|----------|-----------------------------------------|
| 6.3.5.2 | Leakage(LC)                                    | /                                                              | √ |          | Rejected                                |
| 6.3.5.3 | No protective film                             | /                                                              |   | √        | Rejected                                |

### 6.4 Backlight components

| No.   | Item                                  | Description                                                                                                                                                             | MAJ      | MIN | Accept standard             |
|-------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|-----------------------------|
| 6.4.1 | Backlight not<br>work, wrong<br>color | /                                                                                                                                                                       | <b>√</b> |     | Rejected                    |
| 6.4.2 | Color<br>deviation                    | Turn backlight, the color differ from the sample, do not match the drawing after testing                                                                                |          | √   | Refer to sample and drawing |
| 6.4.3 | Brightness<br>deviation               | Turn on backlight, the brightness is differ from the sample, or do not match the drawing after testing, or over $\pm$ 30% compare with sample if drawing not specified. |          | √   | Refer to sample and drawing |
| 6.4.4 | Uneven<br>brightness                  | Turn on the backlight, the brightness is uneven on the same LED and beyond the specification of drawing.                                                                |          | √   | Refer to sample and drawing |
| 6.4.5 | Spot/line<br>scratch                  | There is stain, scratches on backlight when turn on.                                                                                                                    |          | √   | Refer to 6.3.1/6.3.2        |

### 6.5 Mental frame

| No.   | Item                                                                           | Description                                                                                                                                                                                                                                                                                                                                                 | MAJ      | MIN | Accept<br>standard |
|-------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|--------------------|
| 6.5.1 | material/surface                                                               | Mental frame/surface approach inconsistent with specification.                                                                                                                                                                                                                                                                                              | <b>√</b> |     | Rejected           |
| 6.5.2 | Twist not<br>qualified/without<br>twisting                                     | Twist method/direction wrong, not twist as required                                                                                                                                                                                                                                                                                                         | 1        |     | Rejected           |
| 6.5.3 | Oxidized steak, paint<br>stripped, color<br>changed, dented mark,<br>scratches | 1.Oxidized steak on the surface of the metal frame;2. front surface paint scratch to substrate, the stripped spot ≤ 0.8mm and exceed 3 areas;3.line defect in length ≤ 5.0mm and width ≤ 0.05mm exceed 2 areas, front dent, bubble and side surface have paint stripping to substrate ≤ 1.0mm exceed 3 areas, line defect in width ≤ 0.05mm exceed 3 areas. |          | J   | Rejected           |
| 6.5.4 | Burred                                                                         | Burr is too long, enter into viewing area                                                                                                                                                                                                                                                                                                                   |          | √   | Rejected           |

### 6.6 PCB/COB

| N     | 0. | Item                    | Description                                                                                                                                                | MAJ | MIN | Accept standard |
|-------|----|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----------------|
| 6.6.1 |    | Epoxy Cover<br>Improper | <ol> <li>The Pad within the round white mark is exposed to outside.</li> <li>The height of epoxy covers beyond document /drawing specification.</li> </ol> |     | 4   | Rejected        |

#### TAILOR PIXELS TECHNOLOGY CO., LTD.

|       |                        | TAILOR PIXELS TECHNOLOGY CO., LTD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |   |          |
|-------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|----------|
|       |                        | <ol> <li>The epoxy should be covered within the white round mark and the maximum overage is 2mm more than the radius of white mark.</li> <li>Clear liner mark on COB surface or pinhole that it is possible to penetrate through the epoxy to chip.</li> <li>The pinhole diameter over 0.25mm or other material on COB surface.</li> </ol>                                                                                                                                                                                          |   |   |          |
| 6.6.2 | PCB cosmetic<br>defect | <ol> <li>PCB pad surface can not be oxidized or contaminated.</li> <li>PCB can not appear bubbles after through the reflow oven.</li> <li>Copper lead due to the PCB green oil drop or scratches.         If repaired by adding the green oil, circuit diameter Φ can not over 1.3mm, other diameter Φ can not over 2.6mm, total less than 10 areas. Otherwise reject.     </li> </ol>                                                                                                                                              |   | 1 | Rejected |
| 6.6.3 | Components<br>error    | <ol> <li>PCB components inconsistent with drawing. Wrong components, more or less pa, polar reverse (The bias circuit of LCD voltage or BL limit current value adjustment is not controlled if not special specified.)</li> <li>The JUMP short of PCB should be consistent of the mechanical drawing.</li> <li>The components is specially required by the customers and specified in mechanical drawing / technical documents, the components specification should be conformed to technique demand. Otherwise rejected</li> </ol> | ✓ |   | Rejected |

## 6.7 SMT part (Refer to IPC-A-610C if not specified)

| No.   | Item                   | Description                                                                                                                                                                              | MAJ | MIN      | Accept standard |
|-------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|-----------------|
| 6.7.1 | Soldering<br>defect    | Cold soldering, false solder, missing solder, tin crack, tin un-dissolved happened with soldering.                                                                                       |     | √        | Rejected        |
| 6.7.2 | Solder<br>ball/splash  | Solder ball/tin dross drop lead to solder short.                                                                                                                                         |     | √        | Rejected        |
| 6.7.3 | DIP parts              | DIP parts, keypad, connection appear floating and tilted.                                                                                                                                |     | √        | Rejected        |
| 6.7.4 | Spot weld<br>shape     | The spot weld should be inner dent, can not form to cover solder or less solder or icicle, otherwise reject                                                                              |     | <b>√</b> | Rejected        |
| 6.7.5 | Component foot exposed | For the DIP type components, after soldered, 0.5~2mm component foot must be remained, and should not damage the solder surface nor fully covered the component foot. Otherwise rejected. |     | √        | Rejected        |
| 6.7.6 | Appearance poor        | After soldering, the solder residues appear brown or black. PCB solder spot remained white mist residues after clean.                                                                    |     | √        | Rejected        |

### Heating pressure part (including H/S, FPC, etc.)

6.8

TAILOR PIXELS TECHNOLOGY CO., LTD.

| No.   | Item                   | Description                                                                                                                                                                         | MAJ      | MIN | Accept standard         |
|-------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|-------------------------|
| 6.8.1 | Out of specification   |                                                                                                                                                                                     | <b>√</b> |     | Rejected                |
| 6.8.2 | Size/position          | The size of heating material should be within the specification of the drawing, the contact area of conducted material should be attached more than 1/2 of the body (ITO, PDA, etc) |          | √   | Acceptable              |
| 6.8.3 | Heat pressure<br>dirty | The obstacle existed in non-conductive heating area and not lead to short, or existed in conductive area but the obstacle is less than 50% of pressure area, it is acceptable.      |          | √   | Acceptable              |
| 6.8.4 | Folding defect         |                                                                                                                                                                                     |          | √   | Refer to limited sample |

### 6.9 Connector and other parts

| No.   | Item                   | Description                                                                                                                                             | MAJ      | MIN      | Accept standard |
|-------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-----------------|
| 6.9.1 | Specification improper | The specification of connector and other components do not conform to the drawing as required.                                                          | <b>√</b> |          | Rejected        |
| 6.9.2 | Position and order     | Solder position and Pin 1 should be consistent with the drawing.                                                                                        |          | √        | Rejected        |
| 6.9.3 | Cosmetic               | <ol> <li>The body of outer component and the PIN has flux.</li> <li>The deformation bigger of PIN connector is bigger than 1/2 of PIN width.</li> </ol> |          | <b>√</b> | Rejected        |

### 6.10 General cosmetic

| No.    | Item                    | Description                                                                                                                                                                                                                             | MAJ | MIN      | Accept standard |
|--------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|-----------------|
| 6.10.1 | Connection<br>material  | Copper lead on FPC pad or the pin terminal of H/S, FFC and damaged. FPC,FFC, COF,H/S connected material curved (except for original). FPC、PCB pad is bigger than 1PIN width. FPC/FFC material segment, crease exceed the specification. |     | <b>√</b> | Rejected        |
| 6.10.2 | Stiffing type<br>defect | Stiffening tape is not covered or fully covered the product's circuit needs to be protected. (Like H/S, FFC, FPC) or cover to the output pin.                                                                                           |     | √        | Rejected        |
| 6.10.3 | Visual dirty            | Dirty on surface of finished products, residual glue, solder spatter or solder ball remain on non-soldered area of PCB/COB.  The defective mark or label on product does not remove.                                                    |     | 1        | Rejected        |
| 6.10.4 | Assembly black spot     | The spot or black dots found after assembly the products with backlight or diffuser.                                                                                                                                                    |     | √        | Refer to 6.3.1  |
| 6.10.5 | Product mark            | Part number and batch mark is not conformed with the technical requirement and position, not clear or without mark.                                                                                                                     |     | 1        | Rejected        |
| 6.10.6 | Inner packing           | Packing is inconsistent with requirement, short or over load, Packing is inconsistent with shipment mark/ order demand.                                                                                                                 |     | √        | Rejected        |



### ■ PRECAUTIONS FOR USING LCD MODULES

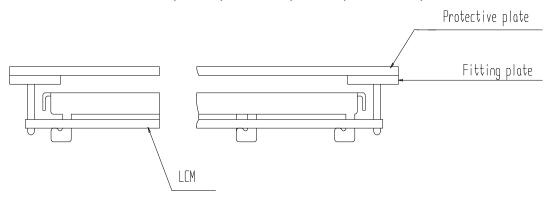
### **▼** Handing Precautions

- (1) The display panel is made of glass. Do not subject it to a mechanical shock by dropping it or impact.
- (2) If the display panel is damaged and the liquid crystal substance leaks out, be sure not to get any in your mouth. If the substance contacts your skin or clothes, wash it off using soap and water.
- (3) Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- (4) The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- (5) If the display surface becomes contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If it is heavily contaminated, moisten cloth with one of the following solvents:
  - Isopropyl alcohol
  - Ethyl alcohol
- (6) Solvents other than those above-mentioned may damage the polarizer. Especially, do not use the following.
  - Water
  - Ketone
  - Aromatic solvents
- (7) Exercise care to minimize corrosion of the electrode. Corrosion of the electrodes is accelerated by water droplets, moisture condensation or a current flow in a high-humidity environment.



### USING LCD MODULES

### **▼ Liquid Crystal Display Modules**


LCD is composed of glass and polarizer. Pay attention to the following items when handling.

- (1) Please keep the temperature within specified range for use and storage. Polarization degradation, bubble generation or polarizer peel-off may occur with high temperature and high humidity.
- (2) Do not touch, push or rub the exposed polarizers with anything harder than an HB pencil lead (glass, tweezers, etc.).
- (3) N-hexane is recommended for cleaning the adhesives used to attach front/rear polarizers and reflectors made of organic substances which will be damaged by chemicals such as acetone, toluene, ethanol and isopropylalcohol.
- (4) When the display surface becomes dusty, wipe gently with absorbent cotton or other soft material like chamois soaked in petroleum benzin. Do not scrub hard to avoid damaging the display surface.
- (5) Wipe off saliva or water drops immediately, contact with water over a long period of time may cause deformation or color fading.
- (6) Avoid contacting oil and fats.
- (7) Condensation on the surface and contact with terminals due to cold will damage, stain or dirty the polarizers. After products are tested at low temperature they must be warmed up in a container before coming is contacting with room temperature air.
- (8) Do not put or attach anything on the display area to avoid leaving marks on.
- (9) Do not touch the display with bare hands. This will stain the display area and degradate insulation between terminals (some cosmetics are determinated to the polarizers).
- (10) As glass is fragile. It tends to become or chipped during handling especially on the edges. Please avoid dropping or jarring.

## Installing LCD Modules

The hole in the printed circuit board is used to fix LCM as shown in the picture below. Attend to the following items when installing the LCM.

(1) Cover the surface with a transparent protective plate to protect the polarizer and LC cell.



(2) When assembling the LCM into other equipment, the spacer to the bit between the LCM and the fitting plate should have enough height to avoid causing stress to the module surface, refer to the individual specifications for measurements. The measurement tolerance should be ±0.1mm.

## Precaution for Handing LCD Modules

Since LCM has been assembled and adjusted with a high degree of precision, avoid applying excessive

### TAILOR PIXELS TECHNOLOGY CO., LTD.

shocks to the module or making any alterations or modifications to it.

- (1) Do not alter, modify or change the shape of the tab on the metal frame.
- (2) Do not make extra holes on the printed circuit board, modify its shape or change the positions of components to be attached.
- (3) Do not damage or modify the pattern writing on the printed circuit board.
- (4) Absolutely do not modify the zebra rubber strip (conductive rubber) or heat seal connector.
- (5) Except for soldering the interface, do not make any alterations or modifications with a soldering iron.
- (6) Do not drop, bend or twist LCM.

### **▼** Electro-Static Discharge Control

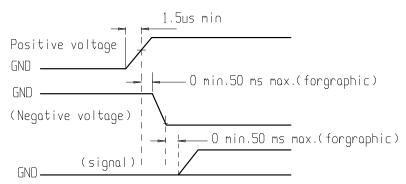
Since this module uses a CMOS LSI, the same careful attention should be paid to electrostatic discharge as for an ordinary CMOS IC.

- (1) Make certain that you are grounded when handing LCM.
- (2) Before remove LCM from its packing case or incorporating it into a set, be sure the module and your body have the same electric potential.
- (3) When soldering the terminal of LCM, make certain the AC power source for the soldering iron does not leak.
- (4) When using an electric screwdriver to attach LCM, the screwdriver should be of ground potentiality to minimize as much as possible any transmission of electromagnetic waves produced sparks coming from the commutator of the motor.
- (5) As far as possible make the electric potential of your work clothes and that of the work bench the ground potential.
- (6) To reduce the generation of static electricity be careful that the air in the work is not too dried. A relative humidity of 50%-60% is recommended.

### Precaution for soldering to the LCM

- (1) Observe the following when soldering lead wire, connector cable and etc. to the LCM.
  - Soldering iron temperature :  $280^{\circ}$ C  $\pm$   $10^{\circ}$ C.
  - Soldering time: 3-4 sec.
  - Solder : eutectic solder.

If soldering flux is used, be sure to remove any remaining flux after finishing to soldering operation. (This does not apply in the case of a non-halogen type of flux.) It is recommended that you protect the LCD surface with a cover during soldering to prevent any damage dur to flux spatters.


- (2) When soldering the electroluminescent panel and PC board, the panel and board should not be detached more than three times. This maximum number is determined by the temperature and time conditions mentioned above, though there may be some variance depending on the temperature of the soldering iron.
- (3) When remove the electroluminescent panel from the PC board, be sure the solder has completely melted, the soldered pad on the PC board could be damaged.

## Precautions for Operation

- (1) Viewing angle varies with the change of liquid crystal driving voltage (VO). Adjust VO to show the best contrast.
- (2) Driving the LCD in the voltage above the limit shortens its life.
- (3) Response time is greatly delayed at temperature below the operating temperature range. However, this does not mean the LCD will be out of the order. It will recover when it returns to the specified temperature range.
- (4) If the display area is pushed hard during operation, the display will become abnormal. However, it will return to normal if it is turned off and then back on.

### TAILOR PIXELS TECHNOLOGY CO., LTD.

- (5) Condensation on terminals can cause an electrochemical reaction disrupting the terminal circuit. Therefore, it must be used under the relative condition of  $40^{\circ}$ C, 50% RH.
- (6) When turning the power on, input each signal after the positive/negative voltage becomes stable.



### Storage

When storing LCD's as spares for some years, the following precaution are necessary.

- (1) Store them in a sealed polyethylene bag. If properly sealed, there is no need for dessicant.
- (2) Store them in a dark place. Do not expose to sunlight or fluorescent light, keep the temperature between 0°C and 35°C.
- (3) The polarizer surface should not come in contact with any other objects. (We advise you to store them in the container in which they were shipped.)
- (4) Environmental conditions:
  - Do not leave them for more than 168hrs. at 80°C.
  - Should not be left for more than 48hrs, at -30°C.

### Safety

- (1) It is recommended to crush damaged or unnecessary LCD's into pieces and wash them off with solvents such as acetone and ethanol, which should later be burned.
- (2) If any liquid out of a damaged glass cell and comes in contact with the hands, wash off thoroughly with soap and water.

## Limited Warranty

Unless agreed between TPS and customer, TPS will replace or repair any of its LCD modules which are found to be functionally defective when inspected in accordance with TPS LCD acceptance standards (copies available upon request) for a period of one year from date of shipments. Cosmetic/visual defects must be returned to TPSwithin 90 days of shipment. Confirmation of such date shall be based on freight documents. The warranty liability of TPS limited to repair and/or replacement on the terms set forth above. TPS will not be responsible for any subsequent or consequential events.

### ▼ Return LCM under warranty

No warranty can be granted if the precautions stated above have been disregarded. The typical examples of violations are :

- Broken LCD glass.
- PCB eyelet's damaged or modified.
- PCB conductors damaged.
- Circuit modified in any way, including addition of components.
- PCB tampered with by grinding, engraving or painting varnish.
- soldering to or modifying the bezel in any manner.

Module repairs will be invoiced to the customer upon mutual agreement. Modules must be returned with sufficient description of the failures or defects. Any connectors or cable installed by the customer must be removed completely without damaging the PCB eyelet's, conductors and terminals.